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       All-solid-state batteries (SSBs) are one of the most fascinating next-generation energy storage systems that

can provide improved energy density and safety for a wide range of applications from portable electronics to

electric vehicles. The development of SSBs was accelerated by the discovery of new materials and the design of

nanostructures. In particular, advances in the growth of thin-film battery materials facilitated the development of all

solid-state thin-film batteries (SSTFBs)—expanding their applications to microelectronics such as flexible devices

and implantable medical devices. However, critical challenges still remain, such as low ionic conductivity of solid

electrolytes, interfacial instability and difficulty in controlling thin-film growth. In this review, we discuss the evolution

of electrode and electrolyte materials for lithium-based batteries and their adoption in SSBs and SSTFBs. We

highlight novel design strategies of bulk and thin-film materials to solve the issues in lithium-based batteries. We

also focus on the important advances in thin-film electrodes, electrolytes and interfacial layers with the aim of

providing insight into the future design of batteries. Furthermore, various thin-film fabrication techniques are also

covered in this review.
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1. Introduction

       Lithium-ion batteries (LIBs) are one of the great successes of electrochemical energy storage devices utilized

in diverse applications such as portable electronics, hybrid automobiles and even large-scale electrical power

storage systems . Since the first market emergence of LIBs in the 1990s, the performance of LIBs has been

remarkably improved to meet the increasing demand for new energy storage systems with high energy density,

high power density, long cycle life and a wide range of operating temperatures . Moreover, rechargeable

batteries are rapidly expanding to drivetrains , as can be seen from the quadrupled global sales of plug-in light

vehicles from 0.55 to 2.21 million cars annually from 2015 to 2019 . Thus, developing revolutionary energy

storage systems is a critical task in today’s energy-dependent society.

       LIBs are composed of a cathode and an anode separated by an electrolyte. During discharging, the lithium

ions (Li ) migrate through the electrolyte from the anode to the cathode and a discharging current flows through the

external circuit, whereas the use of electrical energy pushes the electrons and Li  back to the anode during the

charging process. Most of the commercial LIBs employ liquid electrolytes owing to their large electrochemical

[1][2][3][4]

[5][6]

[7][8]

[9]

+

+



All-Solid-State Batteries | Encyclopedia.pub

https://encyclopedia.pub/entry/1414 2/20

voltage windows, high ionic conductivities and great wettability with the internal components of LIBs . Generally,

the liquid electrolyte is a mixture of linear and cyclic carbonate-based organic solvents such as diethyl carbonate

(DEC) , ethyl methyl carbonate (EMC) , dimethyl carbonate (DMC) , ethylene carbonate (EC) 

, propylene carbonate (PC) , and lithium salt such as lithium hexafluorophosphate (LiPF ), lithium

hexafluoroarsenate monohydrate (LiAsF ), lithium perchlorate (LiClO ) and lithium tetrafluoroborate (LiBF ) 

. However, these liquid electrolytes have severe drawbacks , including high flammability, narrow

electrochemical stability windows, limited operating temperatures and irreversible decomposition. Due to their high

flammability, organic liquid electrolytes are believed to be the main reason for fires and explosions in LIBs . In

addition, the formation of lithium dendrites with organic liquid electrolytes  leads to internal short circuits causing

catastrophic failure of lithium-based batteries . Therefore, developing alternative battery systems to prevent such

issues of the liquid electrolytes as well as to provide high energy density and power is indispensable.

          All-solid-state batteries (SSBs), which use non-volatile solid electrolytes, have emerged as an alternative

battery system to replace the conventional LIBs with liquid electrolytes . Not only are SSBs inherently safer

owing to the lack of flammable organic components, SSBs also have a large electrochemical stability window, thus

enabling a dramatic improvement in the energy density . Furthermore, the SSBs have much higher power

and energy characteristics compared with various batteries which are currently being developed as next-generation

batteries . The electrodes are required to have the following features in order to achieve high energy density:

(i) high gravimetric capacity (in Ah/kg) and volumetric capacity (in Ah/L), i.e., a high number of electrons transferred

per unit of reaction; (ii) high (cathode) and low (anode) standard redox potential of the respective electrode redox

reaction, leading to high cell voltage. Moreover, electrochemical reactions in rechargeable cells at both anode and

cathode electrodes must be highly reversible to maintain the capacity for thousands of cycles. Recent studies,

therefore, have focused on developing new electrode materials   or engineering electrode architectures 

  to increase the energy density of SSBs. Among various attractive candidate materials for electrodes, the

selection of cathode materials depends on the battery type, i.e., Li  or Li-metal batteries. In the case of LIBs, air-

stable lithium-based intercalation compounds should be used as a cathode due to the absence of lithium in the

anode . On the contrary, for Li-metal batteries, the cathode does not need to be lithiated before cell

assembly owing to the use of metallic lithium as an anode . Among a large number of materials proposed for the

cathode in LIBs, transition metal oxides have been recognized as one of the most promising cathode materials 

. For the anode, graphitic carbon allotropes were mostly used in LIBs, but the use of lithium metal can

significantly increase the volumetric energy density by up to 70% with respect to graphite . However, lithium

metal electrodes encounter formidable challenges such as uncontrollable dendrite growth and high reactivity with

solid electrolytes, which hampers the use of lithium metal electrodes . Alternatively, recent studies of anode

materials have focused on lithium transition metal oxides, vanadium oxides or lithium metal nitrides . One

of the key features of SSBs is replacing liquid electrolytes with solid electrolytes, which can dramatically enhance

the safety of batteries. In order to replace the current organic liquid electrolytes, solid-state electrolytes need to

possess high ionic conductivity, negligible electronic conductivity and good stability in contact with the anode and

cathode electrodes . Many different types of inorganic solid electrolytes—Na superionic conductor
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(NASICON) , perovskite , lithium phosphorous oxy-nitride (LiPON) , sulfide  and garnet 

—are widely studied in SSBs.

       With the development of SSBs, all-solid-state thin-film batteries (SSTFBs) have received significant attention in

recent years  that can be used for low power microelectronic devices (e.g., implantable medical devices)

and energy harvesting technologies . Similar to conventional LIBs, SSTFBs consist of a cathode, an anode and

an electrolyte. Owing to the difference in chemical potentials of lithium in the two electrodes, the transfer of Li  from

the anode through the electrolyte into the cathode (discharge) delivers energy, whereas the reverse lithium transfer

(charge) consumes energy. One unique feature of SSTFBs is the usage of nanostructured thin films and thus

SSTFBs can significantly reduce the transport distance of charge carriers, enhancing the kinetics of lithium storage

. Furthermore, the overall performance of SSTFBs can be controlled by modulating the physical and chemical

properties of thin films. In order to make SSTFBs, all the battery components need to be fabricated into

multilayered thin films by suitable thin-film techniques.

           While SSBs and SSTFBs have shown their potential as the next major advances beyond LIBs, their

performances have not yet been reached the practical level mainly due to the limits of intrinsic material properties.

Therefore, understanding and controlling the properties of electrode and electrolyte materials will provide insight

into the enhancement of the next-generation battery performances.

2. Electrodes and Electrolytes for Lithium-Based Batteries

       As described earlier, the alleviation of safety concerns by using solid electrolytes is the key feature of SSBs.

Moreover, solid electrolytes exhibit a large electrochemical window (up to five volts), which can enable the

utilization of high voltage cathode materials as well as lithium metal anode.

2.1. Electrodes

       Selecting electrode materials for the next generation of batteries needs careful considerations with regards to

safety, energy density, cost, cyclability, crustal abundance and recyclability. Electrode chemistries which rely on the

mining of rare elements and the utilization of complex ceramic processing greatly diminish the sustainability of an

electrode material . In addition to the extraction and processing of raw materials, a holistic approach considering

the electrode synthesis and device fabrication must be taken into the actual energy cost of battery fabrications.

2.2. Solid Electrolytes

       The NASICON structure, standing for Na  superionic conductors, was reported by Hangman et al. in 1968 .

It has a rhombohedral structure (space group R-3c) made of the framework of octahedra (MO , M = divalent to

pentavalent transition metal ions) and tetrahedra (XO , X = P, Si, As). Two MO  octahedra and three PO

tetrahedra share oxygen atoms, which are assembled to form a 3D network structure. This structure provides a 3D

interconnected conduction pathway for mobile ions, most commonly Na  or Li  . The NASICON structure can

have a wide range of compositional varieties, leading to varied ionic conductivities. The most promising NASICON-
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type Li  conductors are LiTi (PO )  and LiGe (PO )  with Al substitutions. Arbi et al.  reported the synthesis of

Li Al Ti (PO )  (LATP) and Li Al Ge (PO )  (LAGP) conductors (0 ≤ x ≤ 0.5) giving conductivities of 3.4 ×

10  S/cm (LATP, x = 0.2) and 10  S/cm (LAGP, x = 0.2) at room temperature. By enhancing the crystallization of

LAGP, Thokchom et al.  reported a conductivity of 4.22 × 10  S/cm at room temperature. Although its high ionic

conductivity is attractive, the instability of LATP in contact with Li metal due to the reduction of Ti  requires an

additional protective layer. Furthermore, expensive precursors to synthesize LAGP would require the substitution of

Ge. As prototype cells, LAGP was used for a Li protection membrane for aqueous Li–air batteries .

       By the 1980s, a considerable amount of work had been done on inorganic solid lithium superionic conductors,

Li Si X O  (X = P, Al or Ge, LISICON) . LISICON is based on the γ-Li PO  structure that is expected to

diffuse Li  through the vacancy mechanism in its pure state. The ionic conductivity of Li ZnGe O  was limited to

10  S/cm at room temperature and had reactivity with Li anode or atmospheric CO  . Kuwano and West in

1980 reported much higher ionic conductivity for Li GeO –Li VO  systems with a total ionic conductivity of 4 × 10

S/cm at 18 °C with the addition of an interstitial diffusion mechanism . The introduction of V  (e.g.,

Li Ge V O ) contributed to stabilizing the structure in the presence of CO  in air. It is also reported that the

Li SiO –Li PO  solid solution presented the ionic conductivity 10  S/cm at room temperature and had better

stability against Li due to the absence of transition metal ions. While maintaining the chemical stability in

Li Si/GeO –Li PO  solid solution, the ionic conductivity could be further improved to ~10  S/cm by substituting O

with Cl, enlarging the four oxygen bottleneck size and lowering the diffusion barriers . The most significant

conductivity improvement of the LISICON structure was achieved with O replacement with larger and better

polarizing ions, S, to form thio-LISICON. For example, the Li S–GeS2–P S  system (Li Ge P S , called

LGPS) reached a high ionic conductivity of 2.2 × 10  S/cm at room temperature . However, the high sensitivity

to moisture in air and difficulties in the synthesis of sulfide electrolytes remain as challenges.

       In 1992, Bates et al.  reported the synthesis of lithium phosphorus oxynitride (LiPON, Li PO N ) by

RF-magnetron sputtering of Li PO , which showed conductivity of 2 × 10  S/cm at 25 °C. Different from other

electrolytes, LiPON has an amorphous structure, and its ionic conductivity is significantly affected by the amount of

nitrogen . Another route to improve the ionic conductivity of LiPON is to increase the Li concentration, as

can be seen by the conductivity increase to 6.4 × 10  S/cm at 25 °C when LiPON was deposited with Li O in

addition to Li PO . Because of its easy deposition in thin films, LiPON can present a low resistance in the form of a

thin film. Thus, LiPON is commonly used as the electrolyte for thin-film microbatteries (1–10 mAh) that can be used

for smart cards, wearable devices, MEMS or implantable medical devices . The deposition of LiPON and

prototype battery performance will be discussed in detail later.

          Among perovskite-type solid electrolyte materials, Li La TiO  (LLTO) exhibited very high bulk ionic

conductivity. The LLTO is composed of the ideal structure cubic phase α-LLTO with Pm3 m symmetry and

tetragonal phase β-LLTO with a P4/mmm space group. In 1993, Inaguma et al.   showed the improved ionic

conductivity of Li La TiO  compared to LISICON. The bulk and grain boundary activation energies of the

cubic perovskite structure were reported to be E  = 0.40 eV and E  = 0.42 eV, respectively. Importantly, the bulk

ionic conductivity was reported to be 1 × 10  S/cm at room temperature, but the total ionic conductivity was 2 ×
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10  S/cm due to the high grain boundary resistance. Alonso et al.  identified the position of Li  in Li La TiO

using the neutron powder diffraction and suggested the Li  conduction pathway in LLTO. Jay et al.  proposed an

additional diffusion pathway in the c-direction via a computational study that aligned more directly with

experimental data. Lu et al.  synthesized Li Sr La TiO  to enhance the Li  diffusion by increasing A site.

With the composition of Li Sr La TiO  a total conductivity of 4.84 × 10  S/cm was achieved with an

activation energy of just 0.29 eV.

         Although its high bulk ionic conductivity is attractive, LLTO suffers from high grain boundary resistance and

reactivity with Li metal. LLTO variants showed distinct discoloration when in contact with Li metal, and the Li

intercalation at 1.7 V vs. Li/Li  into LLTO was observed, limiting their use with low potential anode materials 

. To resolve the instability issue of LLTO with Li, Ti  was substituted with Ge   or Zr  and Ta   extending

the cathodic stability limit of perovskites to 0–1 V vs. Li/Li .

3. Interfacial Phenomena between Solid-State Electrolytes
and Electrodes

       As described in previous sections, substantial effort has been devoted to developing high energy and power

density electrodes, solid-state electrolytes with high ionic conductivity, good chemical stability and large

electrochemical stability windows. However, the performance enhancement of batteries can be insignificant despite

the dramatically enhanced performance of an individual component, i.e., electrodes or electrolytes. More

importantly, the power density and cycle life of SSBs still have not met the requirements for practical applications.

Such poor performances are mainly attributed to the large interfacial resistance between solid electrolytes and

electrodes   that originates from the mechanical force development or chemical composition changes.

These configurational and chemical changes driven by electrochemical reactions are summarized in Figure 1 

. We will discuss mechanical and chemical factors associated with the large interfacial resistance in the following

section.

Figure 1. Schematic diagram of lithium metal battery and electrode/electrolyte interface issues.

           Mechanically driven interfacial resistance between solid electrolytes and electrodes originates from poor

contact between two rigid materials and the volume changes of electrodes during the charge–discharge process
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. This poor contact eventually leads to the formation and propagation of cracks  as well as the delamination of

interfaces . Sulfide-based electrolytes possess good mechanical ductility, thus can maintain good contact with

electrodes without the degradation of the interfacial contact resistance . In contrast, oxide-based electrolytes

suffer from the poor adhesion of interfaces with electrodes as most ceramics are vulnerable to cracking due to the

low ductility . The insufficient mechanical contact results in the delamination or “dead” area induced by

isolated electrode contact points from solid electrolytes. Due to the lack of conduction paths, neither electrons nor

Li  can be transferred across the dead areas, which in turn leads to the growth of interfacial resistance and

capacity fading . Furthermore, the large volume changes of electrode materials during repeated charge–

discharge processes could also lead to the loss of effective contact between electrodes and solid electrolytes .

Zhang et al.   first demonstrated changes in the pressure and height of LCO/Li GeP S /In and

LCO/Li GeP S /LTO under galvanostatic cycling where the volume expansions of LCO, LTO and In were found

to be 2%, 0.2% and 105.6%, respectively. Due to the significant volume change of In, the LCO/Li GeP S /In cell

showed severe capacity fading. Similarly, Koerver et al.   detected the increased interfacial resistance and

capacity fading caused by the contact loss at the NCM-811/β-Li PS  interface.

          The occurrence of the interfacial resistance by the formation of interlayers is a well-known phenomenon in

SSBs. One of the main reasons for the interfacial resistance is the formation of space charge regions (SCRs).

SCRs originate from the depletion of lithium near the interface between the cathode and the electrolyte in SSBs

due to the high potential gradient . The potential difference at this interface causes Li  to move toward a higher

potential region, causing lithium depletion and increasing the ionic resistance at the interface. Sulfide-based

electrolytes exhibit a weaker interaction with Li  and lower chemical potential of Li  compared with those of oxide

cathodes, such as LCO. Thus, the Li  in sulfide-based electrolytes will migrate into the oxide cathode easily,

resulting in the redistribution of Li  at the interface which forms lithium depletion layers, SCRs . Unlike sulfide-

based electrolytes, the influence of SCRs is smaller in oxide-based electrolytes because the chemical potential of

Li  in oxide electrolytes is comparable with that in the cathode . At the interface between LCO and

Li Al Ti Si P O , the thickness of SCRs in the sulfide-based electrolyte was thicker than 1 μm determined

by measuring the electric potential profile with transmission electron microscopy (TEM) . A similar SCR

thickness was also reported in LiCoPO /Li Al Ti (PO )  using Kelvin probe force microscopy (KPFM) . On

the contrary, the thickness estimated from the resistance (~10 Ω cm ) at the LiPON/LCO interface was found to be

in the range of nanometers . De Klerk et al.   also estimated the nanometer-thick SCRs based on the

interfacial resistance (17 Ω cm ) between the solid electrolytes, i.e., garnet and NASICON (LLZO and

Li Al Ti (PO ) ) and the cathode (LCO) or anode (graphite).

       Interfacial chemical reactions derived from the interdiffusion between electrodes and solid electrolytes can also

contribute to high interfacial resistance . These interfacial reactions can form an interphase layer known as SEI

at the electrode/electrolyte interface by consuming Li  and electrons from electrodes. The electrical properties of

the SEI layer play a role in determining how the reaction between electrolytes and electrodes continues 

. This SEI layer continues to grow until it blocks the Li  transport over the electrolyte/electrode. Park et al.

 showed that an approximately 50-nm-thick layer forms in the vicinity of the LCO/Garnet interface due to the

mutual diffusion of Co, La and Zr which leads to capacity fading. In addition, Wenzel et al.  also revealed that
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Li P, Li S and Li–Ge alloys form a SEI layer upon the reaction of Li GeP S  solid electrolyte with Li metal by in

situ X-ray photoemission spectroscopy.

        As a general strategy to resolve the aforementioned issue at the electrode/electrolyte interface, nanometer-

thick interfacial buffer layers have been grown to enhance the performance of the SSBs . Consequently, it

is critical to employ thin-film growth techniques that can provide high purity and desired crystallinity of target

materials in SSBs’ assembly processes. Furthermore, the growth of thin films is a key success factor in building

SSTFBs that have dramatically reduced charge-transfer resistance throughout the device. Therefore,

understanding the precise control of thin-film growth and determining the impact of thin films on battery

performances are requisite.

4. Electrodes and Electrolytes for SSTFBs

          To meet the increasing demand for portable (micro-)electronic applications in today’s information-rich and

mobile society, developing rechargeable battery systems with high energy density and reduced dimensions is

crucial. For such battery systems, SSTFBs are one of the most attractive battery systems owing to their shape,

versatility, flexibility and lightness . Since being first introduced in 1983 , SSTFBs have been

continuously studied over the past four decades . In recent years, considerable progress

has been made in the development of SSTFBs along with advances in thin-film technologies . SSTFBs

provide unique advantages such as outstanding cycle life and safety compared to conventional LIBs .

Moreover, SSTFBs enable the miniaturization of LIBs required for applications, including implantable medical

devices, wireless microsensors, microelectromechanical system devices and flexible electronics .

       SSTFBs are composed of multiple micron-sized electrochemical cells consisting of a cathode and an anode

electrode separated by an electrolyte. A thin-film electrochemical cell is generally fabricated on a solid substrate

like glass, ceramic or even polymer. The first layer is usually a current collector, then followed by the electrode,

electrolyte, electrode and another layer of a current collector. Generally, the thickness of thin films in SSTFBs is in

the range of nanometers to microns. Such thin layers can significantly enhance the charge transfer kinetics

 which prevents the local overcharging and discharging issue reported in conventional battery systems . In

addition, SSTFBs use dense thin films without a polymeric binder and thus can be used as an ideal system for the

fundamental understanding of energy storage mechanisms. Furthermore, SSTFBs have higher volumetric and

gravimetric power density (Figure 2) compared to other battery systems  . The use of thin-film electrochemical

cells is therefore a promising and practical strategy to fully utilize the advantage of lithium-based batteries for

diverse applications.
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Figure 2. Comparison of the volumetric and gravimetric energy density of solid-state thin-film batteries (SSTFBs)

with other batteries 

5. Conclusions

          Replacing liquid electrolytes with solid counterparts allows SSBs to exhibit excellent safety, electrochemical

stability and high energy density. Despite these advantages, further enhancement of the current SSBs is required

to be used in practical applications. Improving the material properties of electrodes and electrolytes may accelerate

the development of the next-generation energy storage systems. This review discussed key advances in battery

materials and possible solutions to solve their issues. Surface modification, doping and nanostructuring have been

successfully used to improve the electrode performance. For the solid electrolyte, many efforts have been devoted

to improving the ionic conductivity by doping or altering the crystal structures. Indeed, several studies have

improved the thermal and chemical stability of the solid electrolytes by replacing sensitive elements, such as

transition metals. While we mainly focused on oxide-based solid electrolytes, LiRAP and sulfide-based solid

electrolytes are becoming increasingly attractive owing to their outstanding ionic conductivity. However, the highly

air sensitive nature of these electrolytes remains a substantial obstacle.

       Over the last few decades, the development of oxide thin films has led to many technological breakthroughs

for energy and electronic devices. In particular, 2D planar heterostructures have been prevailingly investigated as
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they lead not only to improved functionalities but even to the occurrence of novel properties that do not belong to

the bulk . For instance, the discovery of the formation of a conducting interface between two insulators ,

STO and LaAlO  (LAO), brought the breakthrough in the field of oxide electronics while also becoming the pole of

attraction and inspiration for numerous studies . Recently, a couple of attempts have been made to utilize

heterostructure thin films in lithium-based batteries . In addition, developing new forms of materials with

tailored properties could bring technological breakthroughs in the next-generation energy storage systems. For

example, 3D nanostructures can offer an extremely large number of interfaces and surface area, which are

beneficial for enhancing the electrochemical performance and ion transport in materials . To date, a few

studies have been investigated the influence of 3D nanostructures on the performance of lithium-based batteries

. Exploring new forms of materials will bring new opportunities to develop high-performance electrodes and

electrolytes for SSBs and SSTFBs
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