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Metformin is a first-line treatment for many people with type 2 diabetes mellitus (T2DM) and gestational diabetes

mellitus (GDM) to maintain glycaemic control. Although metformin demonstrates beneficial and protective

cardiovascular effects for the mother, evidence suggests metformin may not be favourable for the short and long-

term metabolic health of the offspring. Metformin can cross the placenta and could have a role in fetal

programming.
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1. Introduction

Diabetes and its effect on fetal health are significant to the developmental origins of health and disease (DOHaD)

hypothesis. Globally, around 223 million women currently live with diabetes, 60 million of whom are of reproductive

age . In addition to pre-existing diabetes, gestational diabetes mellitus (GDM), a form of maternal diabetes

typically first diagnosed during weeks 24–28 of pregnancy, currently affects around 1 in 6 births worldwide,

equating to approximately 16.8 million pregnancies . The diagnostic criteria for GDM vary widely in different

countries and in turn have led to heterogeneity in screening and trial designs, making it difficult for comparative

judgement and unified consensus on its effect on maternal and fetal health . If maternal hyperglycaemia is poorly

controlled, this accelerates intrauterine growth and increases the risk of macrosomia, in which birth weight is > 4

kg, or the fetus being born large for gestational age (LGA), in which birth weight is above the 90th percentile. This

may cause birth trauma for mother and baby by increasing the risk of preeclampsia, neonatal hypoglycaemia,

shoulder dystocia, late stillbirth, or the need for caesarean section or neonatal intensive care . Although GDM

ceases post-parturition, these women are predisposed to an estimated sevenfold increased risk of type 2 diabetes

mellitus (T2DM) within 5–10 years post-pregnancy . Diabetes currently represents 10% of the National

Health Service budget and, with the ever increasing prevalence of diabetic pregnancies, including diabetic risk

factors such as the obesity epidemic and advanced maternal age , it is now paramount to refine diagnostic

and treatment strategies to improve outcomes for mother and baby.

Insulin therapy is a standard treatment for diabetes to restore glucose homeostasis; however, this therapy is

associated with increased maternal weight gain and hypoglycaemia. As rates of diabetes continue to rise, the cost,

storage, and administration requirements for insulin have proven to be of increasing concern , particularly in
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developing countries where these storage requirements may not be feasible . As such, metformin has been

advanced as an alternative first-line therapy for T2DM and GDM in many countries .

2. Metformin in Pregnancy

Metformin is an oral synthetic guanidine analogue known as a ‘glucophage’ due to its glucose-lowering abilities by

reducing gluconeogenesis and insulin resistance . Metformin is a mitochondrial complex I (NADH:ubiquinone

oxidoreductase) inhibitor which is transported into the cell to directly influence cellular respiration (Figure 1).

Complex I (NADH:ubiquinone oxidoreductase) oxidises NADH synthesised from one carbon metabolism,

glycolysis, fatty acid β-oxidation, and the tricarboxylic acid (TCA) cycle for adenosine triphosphate (ATP)

production via the electron transport chain . Thus, metformin-induced suppression of complex I increases

NADH accumulation and ROS production and reduces ATP synthesis, thereby elevating the AMP:ATP ratio. This

activates AMP-activated protein kinase (AMPK) and leads to inhibition of gluconeogenesis, therefore maintaining

glycaemic control . Metformin can also reduce gluconeogenesis by inhibiting AMP deaminase, which further

contributes to elevated cellular AMP levels, thus in turn inhibiting adenylate cyclase and cAMP–PKA signalling.

Metformin-induced suppression of mitochondrial glycerol 3 phosphate dehydrogenase (G3PDH) also augments

cytosolic NAD(P)H concentration, leading to reduced pyruvate levels and a suppression of gluconeogenesis.

However, activation of AMPK signalling inhibits mammalian target of rapamycin (mTOR) activity, a nutrient sensor

which regulates amino acid transport and glucose storage  (Figure 1). This mechanism of action

leads to improved insulin sensitivity by augmenting insulin receptor tyrosine kinase activity, amplifying glycogenesis

and suppressing glycogenolysis, inhibiting lipolysis, enhancing glucose transporter GLUT4 recruitment and activity,

and suppressing the activity of hepatic glucose 6 phosphatase. Metformin also heightens insulin release due to

enhanced glucagon-like peptide-1 (GLP-1) activity .
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Figure 1. Putative mechanism of action of metformin on cellular metabolism and mitochondrial aerobic respiration

to suppress gluconeogenesis. Metformin is an inhibitor of mitochondrial complex I (NADH:ubiquinone

oxidoreductase), AMP deaminase, and mitochondrial glycerol 3 phosphate dehydrogenase (G3PDH), which all

contribute towards suppression of cellular gluconeogenesis to maintain glycaemic control. ROS, reactive oxygen

species; NAD(P)H, nicotinamide adenine dinucleotide phosphate; ATP, adenosine triphosphate; AMP, adenosine

monophosphate; cAMP, cyclic AMP; PKA, protein kinase A; mTOR, mammalian target of rapamycin. Black arrows

indicate cellular pathway. Orange arrows indicate putative effects of metformin. Figure created using

Biorender.com.

Metformin’s glucose-lowering activity certainly demonstrates beneficial outcomes for maternal health, as it

decreases maternal weight gain, inflammation, atherothrombosis, and cardiovascular disease mortality, all of which

are diabetic co-morbidities . However, studies suggest that its short- and long-term effects on the metabolic

health of the offspring may not be as favourable.

Whilst metformin therapy has been shown to significantly reduce the incidence of LGA, it has been reported that it

may decrease birth weight to the extreme as metformin use in pregnancy is associated with an increased rate of

small for gestational age (SGA) births; that is, those with a birth weight below the 10th percentile or two standard

deviations below the mean weight for gestational age . Notably, SGA offspring exposed to metformin in utero

have shown signs of ‘catch-up growth’ during childhood. In the Metformin in Gestational Diabetes: The Offspring

Follow Up (MiG: TOFU) study, at two years of age, metformin-exposed offspring demonstrated higher

subcutaneous adiposity and larger mid-upper arm circumferences and bicep and subscapular skinfolds than

insulin-exposed offspring . By nine years of age, they presented with significantly higher body mass index (BMI)

and larger arm and waist circumferences, triceps skinfolds, and abdominal fat volumes compared to insulin-
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exposed offspring . A follow-up study of children exposed to metformin in utero in pregnancy complicated by

polycystic ovarian syndrome also revealed they had higher BMIs at four years old than placebo-treated

pregnancies . Another randomised controlled trial showed that infants exposed to metformin during GDM

pregnancy were markedly heavier at 12 and 18 months of age compared to insulin-exposed infants . A murine

study examining the effects of gestational metformin exposure from days E0.5 to E17.5 also showed that dams

exposed to metformin manifested lower fetal weight on E18.5 than untreated dams. When fed a high-fat diet later

in development, metformin-exposed fetuses were heavier than untreated fetuses and demonstrated increased

mesenteric fat and liver weight. These findings, combined with gene set enrichment analysis of differentially

expressed genes in the metformin and untreated murine offspring, reveal that metformin may induce

transgenerational effects by way of fetal programming . Accordingly, these studies suggest that metformin

therapy in pregnancy may increase the risk of childhood obesity and thus is likely to predispose offspring to

cardiometabolic diseases during adulthood. It is therefore crucial to develop our understanding of metformin’s

mechanistic activity and its effects on the balance between maternal health and adverse fetal outcomes.

Studies from the literature around the effects of metformin treatment on the placenta suggest that metformin alters

placental gene expression and function (Table 1), although the mechanisms remain unclear.

Table 1. Current literature on the impact of metformin on placental gene expression and function 

.

Reference Model
Effects

Demonstrated by
Metformin

Significance

Clinical studies

Jamal et al.
2012

Pregnant women with
PCOS treated with

metformin

- ⇔ on birth weight
- ↓ uterine artery
pulsatility index

Metformin adversely affected
uteroplacental circulation

Ex vivo or in vitro human placental studies

Jiang et al.
2020

Human GDM and T2DM
placental explants cultured
and treated with metformin

(ex vivo)

Male human placental
explants:

- AMPK activation
- ↑ H3K27 acetylation

- ↓ DNMT1 protein
abundance

- ↓ PGC-1α promoter
methylation and ↑
PGC-1α mRNA

expression

Effects of metformin may be fetal sex-
dependent

Metformin may improve placental
efficiency by facilitating placental

mitochondrial biogenesis

Brownfoot
et al. 2020

Cluver et al.

Human primary tissues
exposed to metformin;

placental explants,
endothelial cells and

- ↓ sFlt-1 and sEng
secretion from primary

endothelial cells,
preterm preeclamptic

Metformin enhances placental
angiogenesis and reduces endothelial
dysfunction by decreasing endothelial
and trophoblastic antiangiogenic factor
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Reference Model
Effects

Demonstrated by
Metformin

Significance

2019

Kaitu’u-Lino
2018

Brownfoot
et al. 2016

placental villous explants,
whole maternal vessels,
maternal omental vessel
explants (in vitro and ex

vivo)

placental villous
explants and villous
cytotrophoblast cells
- ↓ VCAM-1 mRNA

expression in
endothelial cells

- ↑ whole maternal
blood vessel
angiogenesis
- ↓ sFlt mRNA

expression
- ↓ TNFα-mediated

endothelial cell
dysfunction

secretion via mitochondrial electron
transport chain inhibition

Metformin is being trialled as a
medication for preeclampsia (trial

number PACTR201608001752102)

Szukiewicz
et al. 2018

Human placental lobules
perfused with metformin
under normoglycemic or

hyperglycaemic conditions
(ex vivo)

- ↓ CX3CL1 and TNFα
secretion

- ↑ placental CX3CR1
protein expression

- ↓ placental NFκB p65
protein

Metformin has anti-inflammatory
effects in the placenta

Correia-
Branco et
al. 2018

HTR-8/SVneo extravillous
trophoblast cell line

exposed to metformin
(in vitro)

- ↓ proliferation
- ↑ apoptosis

- Inhibited folic acid
uptake

- Inhibited glucose
uptake

- Effects of metformin
were prevented by
inhibition of mTOR,

JNK, and PI3K
pathways

Metformin impairs placental
development and nutrient transport via

PI3K, mTOR, JNK, and PI3K
pathways

Arshad et
al. 2016

Human placental explants;
from healthy pregnancy,

non-treated diet-controlled
GDM pregnancy, and

metformin-treated GDM
pregnancy (ex vivo)

- ↓ similar morphology
in metformin-treated
GDM placenta and
non-treated healthy
placenta, except for
increased cord width
- ↓ placental width in

metformin-treated
GDM placenta

compared to non-
treated GDM placenta

- ↓ chorangiosis,
placental thickness,

and syncytial knots in
metformin-treated

Metformin may improve placental
morphology by restoring diabetic

placental hallmarks to characteristics
similar to healthy placenta
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Reference Model
Effects

Demonstrated by
Metformin

Significance

placenta compared to
non-treated GDM

placenta

Han et al.
2015

Human first trimester
trophoblasts treated with or
without metformin (in vitro)

- ↓ trophoblast cytokine
and chemokine release

in normal and high
glucose culture
concentrations

- No antiangiogenic or
antimigratory effects

Metformin may potentially decrease
placental glucose-induced

inflammatory response

In vivo rodent studies

Jiang et al.
2020

Mice treated with maternal
metformin and high-fat diet

Improved placental
efficiency in males:

- ↓ PGC-1α promoter
methylation and ↑

PGC-1α expression
- ↑ TFAM expression

Improved glucose
homeostasis in male

offspring

Metformin may improve placental
efficiency by facilitating placental

mitochondrial biogenesis
Metformin may be protective to the
offspring by suppressing epigenetic

changes evoked by maternal diabetes

Wang et al.
2019

Pregnant mice fed an
isocaloric diet (control),
high-fat diet, or high-fat

diet plus metformin
(in vivo)

- ↓ placental weight
compared to control
- Partially rescued

high-fat diet induced ↓
in placental and fetal

weight
- ↑ VEGF and MMP-2

protein expression

Metformin improves high fat diet-
induced reduction in placental and

fetal growth, potentially by modulating
placental vasculature

Alzamendi
et al. 2012

Pregnant rats fed a normal
or high-fructose diet,

treated with metformin
(in vivo)

- ↓ fetal weight
- ⇔ on placental weight

or blood vessel area
- Improved fructose
diet induced ↓ blood

vessel area

Metformin reduces fetal weight in mice
fed a normal diet

Metformin prevents high fructose diet-
induced placental dysfunction

Dark grey is table heading; pale grey titles demonstrate whether the study was clinical, ex-vivo or in vitro human

placental, or in-vivo rodent studies. ⇔ no change; ↓reduction; ↑ increase. AMPK, AMP-activated protein kinase;

DNMT, DNA methyltransferase; PGC-1α, peroxisome proliferator-activated receptor-gamma coactivator 1α; TFAM,

mitochondrial transcription factor A; sFlt-1, soluble fms-like tyrosine kinase-1; sEng, soluble endoglin; VCAM-1,

vascular cell adhesion molecule 1; TNFα, tumour necrosis factor alpha; VEGF, vascular endothelial growth factor;
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MMP-2, matrix metalloproteinase-2; NF-κB, nuclear factor kappa B; mTOR, mammalian target of rapamycin; JNK,

c-Jun N-terminal kinase; PI3K, hosphatidylinositol-3-kinase.

2.1. Transplacental Transport of Metformin

As the interface between maternal and fetal circulations, the placenta transports nutrients to the developing fetus.

There is also evidence that metformin is transported across the placenta to the fetal circulation. In metformin-

exposed pregnancies, serum samples from umbilical cord, placental, and fetal tissues have demonstrated

metformin concentrations to be equal or greater than maternal levels, suggesting active transport of metformin from

the maternal circulation across the placenta and into fetal tissue . Metformin is a hydrophilic cation, has a

half-life of 5 h, and is not metabolised in humans, but recent evidence suggests that metformin bioavailability,

volume of distribution, and clearance may be significantly increased in pregnancy, dependent on dose . The

mechanisms of how pregnancy alters metformin clearance remain to be established. Although metformin can cross

the placenta, it is undetermined how metformin influences placental metabolism to influence gene expression and

whether fetal tissues handle metformin in the same way.

The transporter responsible for metformin uptake from the maternal circulation into the placenta is yet to be

determined and requires further research. Studies have reported norepinephrine transporter (NET), serotonin

transporter (SERT), and organic cation transporter novel type 2 (OCTN2) to be localised on the maternal interface

of the placenta at the syncytiotrophoblast apical membrane, which could be responsible . OCT3 has

been demonstrated to be the key transporter for fetal metformin uptake and distribution, localised on the fetal

interface of the placenta at the syncytiotrophoblast basal membrane and fetal capillaries. Indeed, OCT3-/- pregnant

mice show attenuated fetal metformin exposure . However, it is apparent that placental OCT3 expression

increases with gestational age, as a murine study demonstrated that placental OCT3 mRNA and protein

expression increased by 37-fold and 56-fold, respectively, at day 15 of gestation, and by 46-fold and 128-fold,

respectively, at day 19 . Thus, it is possible that metformin may not be reaching fetal tissues with significant

concentration until late gestation. Moreover, these findings suggest that, unlike insulin , metformin can cross the

placenta  and reach fetal tissue, which could potentially influence fetal growth and programming.

2.2. Impact of Metformin on Placental Nutrient Transport and Nutrient Bioavailabilty

It has been demonstrated that metformin influences fetal growth and nutrient bioavailability by inhibiting

mitochondrial complex I, leading to activated AMPK signalling and inhibition of placental mTOR signalling (Figure

1). Attenuated placental mTOR signalling is associated with restricted fetal growth . This mechanism of action

may potentially explain the significant relationship between SGA births and metformin exposure in pregnancy.

mTOR is highly expressed in the human placenta syncytiotrophoblast layer and mTOR complex 1 (mTORC1)

signalling plays a major role in placental nutrient sensing, thus significantly influencing fetal nutrient availability and

metabolism. Trophoblast mTORC1 regulates System A and System L amino acid transporters for amino acid

uptake, essential for fetal metabolism . Preliminary in vitro models of human trophoblast cells with silenced

mTORC1 have also demonstrated that placental mTORC1 may regulate a circulating factor or factors, which could

influence fetal growth . mTORC1 signalling is regulated by placental insulin and IGF I, and fetal glucose,
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amino acid, and oxygen levels. Diabetes may increase mTORC1 activation due to elevated maternal nutrient and

ATP concentrations . During early gestation, the embryo mainly expresses immature mitochondria. As

gestation develops, the placenta and fetus increase their expression of mature mitochondria, which are more

susceptible to metformin inhibition. With this in mind, it is possible metformin may not adversely affect offspring

growth until after the first trimester .

Transplacental metformin exposure may restrict placental and fetal growth by reducing nutrient bioavailability which

could influence fetal programming. Evidence suggests metformin can influence the status of several vitamins and

micronutrients, including vitamins B , B , and D, folic acid, and magnesium . Whilst all of

these nutrients are important for fetal growth and development, folate and vitamin B  are co-factors of one carbon

metabolism, essential for cell growth, metabolism, and production of the methyl donor S-adenosyl-methionine

(SAM). Furthermore, exposure to metformin and maternal deficiency of both folate and vitamin B , during

pregnancy, lead to similar changes to placental and fetal growth and offspring health . We therefore

postulated that a potential mechanism by which metformin influences placental and fetal growth and offspring risk

of cardiometabolic complications is by affecting the balance between folate and vitamin B  levels and, therefore,

perturbing one carbon metabolism.
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