

Molecular Characteristics of Triple-Negative Breast Cancer

Subjects: **Biochemistry & Molecular Biology**

Contributor: Liliana-Roxana Balahura (Stămat) , Sorina Dinescu , Marieta Costache

Researchers have investigated the molecular mechanisms of breast cancer initiation and progression, especially triple-negative breast cancer (TNBC), in order to identify specific biomarkers that could serve as feasible targets for innovative therapeutic strategies development. TNBC is characterized by a dynamic and aggressive nature, due to the absence of estrogen, progesterone and human epidermal growth factor 2 receptors.

triple-negative breast cancer

inflammasome

pyroptosis

1. Introduction

The breast is a complex structure, which is organized in 15 to 25 lobes of different sizes that are connected with lactiferous ducts that terminate in the nipple, ductal formations and glandular tissue, all of these being surrounded by fibro-adipose tissue [1]. Specifically, the adult breast is a tissue highly variable in conformation, adiposity and volume, due to the different proportions between adipose, fibrous and glandular tissue, among which are also found blood and lymphatic vessels. The corresponding distribution of fat and collagenous components differs among women and is influenced by hormonal, physiologic and environmental factors [2].

Breast cancer (BC) is a dynamic, aggressive and heterogeneous disease that is the principle cause of death among women worldwide, but that also affects men [3]. This neoplasm has the potential to be determined by exposure to both genetic and non-genetic risk factors such as gender, age, menopause, nulliparity, obesity, alcohol abuse and exposure to hormones, radiation or therapy [1]. The early detection and diagnosis of BC is based on screening techniques (ultrasound, mammography, contrast-enhanced digital mammography, magnetic resonance imaging and positron emission tomography), microwave imaging techniques (microwave tomographic, radar-based microwave imaging and radiometry), biomarker-based techniques (radioimmunoassay, immunohistochemistry, enzyme-linked immunosorbent assay and fluoroimmunoassay) and breast tissue biopsies, which are used to differentiate between malign and benign tumors [4].

Following a diagnosis of BC, it is necessary to stage it according to the American Joint Committee on Cancer (AJCC) tumor, nodes, and metastasis (TNM) system, as TNM staging is used to define and stratify the size of the tumors (T), the status of regional lymph nodes (N), and distant metastasis (M) [5]. TNM staging is divided into four classes: (I) clinical staging, which includes information from clinical examination; (II) pathological staging, which includes the affected anatomical formations; (III) post-therapy staging, which includes clinical and pathologic information; and (IV) restaging, if necessary [6].

In order to establish the most efficient treatment for patients, the histological classification is completed via the molecular classification of BC that is based on the expression profiles of the estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2) and Ki67 antigen. The main molecular subtypes of breast cancer are luminal A (ER positive, PR positive and HER2 negative), luminal B (ER positive, PR negative and HER2 negative), HER2-enriched (ER negative, PR negative and HER2 positive), triple-negative breast cancer (TNBC), basal-like (ER negative, PR negative and HER2 negative), claudin low (ER negative, claudin negative, vimentin positive, E-cadherin low) and normal breast-like (adipose tissue gene signature) [7]. Luminal and HER2-enriched subtypes are associated with good prognoses and are highly responsive to therapy, resulting in a greatly improved outcome, while TNBC is the most aggressive subtype of BC, which is characterized by a high cell proliferation rate and a tendency to relapse [8]. Experimental studies indicate the presence of two main pathways involved in low-grade and high-grade breast tumorigenesis; low-grade BCs are regularly ER positive, PR positive and HER2 negative, while high-grade BCs are ER negative, PR negative and HER2 positive [9].

The mechanism of BC is dependent on the genetic modification and molecular processes that determine initiation, transformation and progression from normal tissue to tumor tissue [10]. More than 90% of diagnosed BCs are associated with the mutation of specific genes, such as breast cancer genes 1 and 2 (*BRCA1* and *BRCA2*), *TP53*, phosphatase and tensin homolog (*PTEN*), serine/threonine kinase 11 (*STK11*), ataxia-telangiectasia mutated (*ATM*), *BRCA1* interacting protein 1 (*BRIP1*) or the partner and localizer of *BRCA2* (*PALB2*), etc. [11].

In addition, BC aggressiveness is supported by chronic inflammation considering the up-regulation of pro-inflammatory cytokines, such as interleukin (IL)-1 β , IL-6, IL-18 or tumor necrosis factor- α (TNF- α), growth factors or free radicals [12]. The secretion and release of pro-inflammatory cytokines are associated with inflammasome complex activation. Inflammasome is a cytoplasmic multiprotein complex, composed of a sensor (NOD-like receptor protein (NLRP)), an adaptor (an apoptosis-associated speck-like protein containing a caspase-activation and recruitment domain (CARD) (ASC)) and effector molecules (pro-caspase). The inflammasome complex is involved in numerous physiological and pathological mechanisms, including different types of cancer, although the activation of this complex can have both a positive or negative impact on carcinogenesis [13]. First of all, inflammasome activity stimulates epithelial mesenchymal transition (EMT), metastasis and angiogenesis, while inhibiting apoptosis and enhancing tumor development. On the other hand, the inflammasome pathway is also associated with immune reactions and the programmed death of tumor cells through pyroptosis [14].

The dynamic interaction between BC and inflammasome is regulated by a complex molecular network, including non-coding RNAs (ncRNAs). NcRNAs can be classified into short non-coding RNAs (sncRNAs) or long non-coding RNAs (lncRNAs), based on their number of nucleotides [15]. Among the most studied sncRNAs are microRNAs (miRNAs), which are single-stranded ribonucleic acid molecules involved in diverse cellular processes (cell survival, proliferation and adhesion, motility, cell death, inflammation, carcinogenesis, etc.). According to their implication in tumorigenic mechanisms and metastasis, miRNA molecules can be classified into oncogenic miRNAs and suppressor miRNAs [16]. Increasing evidence has indicated that many miRNAs are involved in the regulation of the inflammasome complex (miR-7, miR-9, miR-20a, miR-21, miR-23a, miR-30e, miR-33, miR-132, miR-133, miR-146, miR-155, miR-223, miR-296, miR-377, miR-711, etc.) and that these molecules represent a link between

inflammasome activity and BC, especially TNBC [17]. Recently, researchers' attention has been directed towards targeting these molecules as possible therapeutic strategies for the treatment of BC, due to their significance in post-transcriptional regulation [18].

2. Molecular Characteristics of TNBC

TNBC is a highly invasive and aggressive type of BC, which is characterized by the absence of ER, PR and HER2 expression. TNBC represents almost 20% of all diagnosed BC, being associated with resistance to chemotherapy, a predisposition to metastasis, poor prognoses and reduced survival rates [19]. Over the years, researchers have studied the molecular signatures of TNBC using advanced techniques and, according to gene expression profiles, Lehmann et al. [20], Burstein et al. [21] and Jezequel et al. [22] have all proposed different classification of TNBC in order to investigate possible therapeutic targets to improve the outcomes of TNBC (Table 1). Moreover, according to Lehmann et al., TNBC can be subdivided into six groups: basal-like 1, basal-like 2, mesenchymal, mesenchymal stem-like, immunomodulatory, and luminal androgen receptor TNBC [20]. Burstein et al. proposed a TNBC classification divided into four subtypes: basal-like immune-activated, basal-like immune-suppressed, mesenchymal, and luminal androgen receptor TNBC [21], while Jezequel et al. divided triple-negative tumors into three clusters: C1 (22.4%), C2 (44.9%) and C3 (32.7%) [22]. Classifying and understanding the particularities of TNBC allow for the development of personalized medicine, because each subtype has different characteristics and responses to anti-tumor therapy [23].

Table 1. Molecular comparison between three proposed classifications of TNBC.

TNBC Classification	Method of Analyses	Number of Patients	Subtypes	Abnormal Mechanisms	Relevant Markers	Therapeutic Strategies	Refs.
The Vanderbilt Subtype	K-means clustering	586	Basal-like 1	Cell cycle Cell proliferation DNA damage response	MYC, PIK3CA, CDK6, AKT2, KRAS, FGFR1, IGF1R, CCNE1, CDKN2A/B, BRCA2, PTEN, MDM2, RB1, TP53, KI67	PARP inhibitors HDAC/DNMT inhibitors Natural-killer therapy Cisplatin,	[20] [24] [25] [26]
			Basal-like 2	EGFR, MET, NGF, Wnt/β-catenin, TP63, IGF1R signaling pathway	TP53, TP63, EGFR, MET, BRCA1, RB1, PTEN, CDKN2A, UTX	mTOR inhibitors Growth factor inhibitors (lapatinib, gefitinib, cetuximab, etc.)	[20] [24] [27]

TNBC Classification	Method of Analyses	Number of Patients	Subtypes	Abnormal Mechanisms	Relevant Markers	Therapeutic Strategies	Refs.
				Glycolysis Gluconeogenesis			
			Immunomodulatory	Th1/2, IL-7, IL-12 signaling pathway	TP53, CTNNA1, DDX18, HUWE1, NFKBIA, APC, BRAF, MAP K4, RB1, CTLA4, PDL1	PD1/PDL1/CTLA4 inhibitors Cisplatin PARP inhibitors	[20] [24]
			Mesenchymal-like	Cell motility Cell proliferation Cell differentiation Wnt, TGF β , Notch signaling pathway Epithelial-mesenchymal transition	PTEN, RB1, TP53, PIK3CA, VEGFR2, PI3KCA	mTOR inhibitors Drugs targeting epithelial-mesenchymal transition Abl/Src inhibitor Dasatinib	[20] [24] [28]
			Mesenchymal stem-like	Cell motility Cell differentiation Growth factor signaling Epithelial-mesenchymal transition Low proliferation	BCL2, BMP2, THY, HOXA5, HOXA10, MEIS1, MEIS2, MEOX1, MEOX2, MSX1, BMP2, ENG, ITGAV, KDR, NGFR, NT5E, PDGFR, THY1, VCAM1, VEGFR2	mTOR/MEK/PI3K inhibitors, Src antagonists Antiangiogenic drugs Abl/Src inhibitor Dasatinib	[20] [24]
			Luminal androgen receptor	Steroid synthesis, porphyrin metabolism,	DHCR24, CD166, FASN, FKBP5,	Anti-AR therapy PI3K/CDK4/6 inhibitors	[20] [24] [26] [29]

TNBC Classification	Method of Analyses	Number of Patients	Subtypes	Abnormal Mechanisms	Relevant Markers	Therapeutic Strategies	Refs.
The Baylor Subtype	Non-negative matrix factorization	198		Androgen/estrogen metabolism	APOD, PIP, SPDEF, CLDN8		
			Luminal androgen receptor	Steroid hormone biosynthesis Porphyrin and chlorophyll metabolism PPAR signaling pathway Androgen and estrogen metabolism Hormonale-mediated signaling	TP53, PI3KCA, AKT1, ERBB2, ERBB4, CDK4/6, AR, MUC1, ER, CDH1, KRT7, KRT8, KRT18, KRT19, XBP1, FOXA1	Anti-AR/MUC1 therapy	[21] [30] [31] [32] [33] [34]
			Mesenchymal	Cell motility Epithelial–mesenchymal transition Focal adhesion TGF- β signaling pathway Adipocytokine signaling pathway	PIK3CA, PTEN, STAT3, IGF1, prostaglandin, TGF- β , Wnt, β -catenin, PDGFR α , c-Kit, ABC transporter	TKI/RAS/mTOR inhibitor Growth factor inhibitors	[21] [30] [31] [32] [33]
			Basal-like immunosuppressed	Mitotic cell cycle Mitotic prometaphase M phase of mitotic cell cycle DNA replication DNA repair Immune response Innate immune response	VTCN1, TP53, CENPF, BUB1, PRC1, VTCN1, MS4A6A, MTBP, FGFR2, BARD1, RNASE6	VTCN1 inhibition	[21] [31]
			Basal-like immune-activated	Cytokine–cytokine receptor interaction T cell receptor signaling pathway B cell receptor signaling pathway Chemokine signaling pathway	CCR2, CXCL13, CXCL11, CD1C, CXCL10, CCL5, STAT	Drugs targeting stat signal transduction molecules and cytokines	[21] [31] [35]

TNBC Classification	Method of Analyses	Number of Patients	Subtypes	Abnormal Mechanisms	Relevant Markers	Therapeutic Strategies	Refs.
				NF- κ B signaling pathway [46]			inflammatory factors are involved in the development of TNBC [47]
			Cluster 1	Luminal androgen receptor enriched	AR, Hsp90, PI3K, FGFR4, TTN, TNR, PKHD1L1, SPTA1, NCKAP5, COL15A1, ANKRD11, MYLK	Anti-AR therapy	[36] [37] [38]
The French Subtype	Fuzzy clustering	194	Cluster 2	Basal-like with low immune response High M2-like macrophages High pro-tumorigenic Low anti-tumor immune response [49]	CCL2, CCL5, CCL18, CCL10, CXCL22, IL4, IL8, IL10, IL13, TGF β 1, CD206, CD204, VEGF, Aginase1, PIK3CA, NF1, AKT1, FBN3, ABCC1, DNHD1	M2 inhibition Repolarization of M2 into M1 macrophages	[20] [38] [39] [40] [41] [42] [43] [44] [45]
			Cluster 3	Basal-enriched High immune response Low M2-like macrophages Low pro-tumorigenic High anti-tumor immune response	IL-1 β , IL-6, IL-12, IL-23, CXCL9, TNF- α , CCL2, IFNy, GSF10, DNAH1, CDH23, AHNAK2, GTF3C1	Repolarization of M2 into M1 macrophages	[38] [41] [45]

neutropenia, pyrexia, anemia, thrombocytopenia, electrolyte abnormalities, infection, etc.) and do not lower the relapse rate [50].

Table 2. SOC for TNBC.

Approach	Class of Agents	Examples of Therapy	Mechanism of Action	Refs.
Neoadjuvant	Anthracycline + Taxane	Doxorubicin + Cyclophosphamide + Paclitaxel Epirubicin + Cyclophosphamide + Nab-paclitaxel	Inhibition of DNA and RNA synthesis Inhibition of topoisomerase II enzyme Generation of reactive oxygen species (ROS)	P-binding protein [49]
	Fluoropyrimidine + Taxane	Capecitabine + Docetaxel	Stabilization of microtubules	[51] > 1 family, protein D 2 (BCL2), cancer type 2 (BCL2), taxifol ligand
	Fluoropyrimidine + Epothilone	Capecitabine + Ixabepilone		
	(CCL), cyclin E1 (CCNE1), C-C chemokine receptor type 2 (CCR2), cl			caanerin (CDH),

Class of Agents	Examples of Therapy	Mechanism of Action	Refs.
		Relax/condense chromatin bind nucleosom PARylate H1/H2B	
EGFR inhibitors	Bintrafusp Alfa, dasatinib, gefitinib, sorafenib, nimotuzumab, panitumumab, erlotinib, osimertinib	Cell death initiation Inhibition of cancer cell proliferation Blocking dimerization of receptors, auto-phosphorylation and downstream signaling Inducing receptor internalization, degradation and stable downregulation	[64]
Androgen receptor (AR) antagonists	Bicalutamide, enzalutamide, abiraterone, palbociclib	Decrease in cancer cell viability G1 phase arrest Apoptosis induction	[30] [65]
Antibody drug conjugates	Sacituzumab govitecan, Ladiratuzumab vedotin, Trastuzumab deruxtecan	Cell growth and migration inhibition Binding to the topoisomerase in DNA replication inhibition S-phase-specific cell death initiation DNA damage	[66] sm) raise strategies nsport (or

enhanced permeability and retention (nanoparticles)) and active transport (miRNA and aptamers) [49].

References

1. Khan, N.A.J.; Tirona, M. An updated review of epidemiology, risk factors, and management of male breast cancer. *Med. Oncol.* 2021, 38, 39–46.
2. Oskar, S.; Kehm, R.; Terry, M.B. Breast Tissue Composition—Why It Matters and How Can We Measure It More Accurately in Epidemiology Studies. *Cancer Epidemiol. Biomarkers Prev.* 2021, 30, 590–592.
3. Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. *CA Cancer J. Clin.* 2021, 71, 209–249.
4. Wang, L. Early Diagnosis of Breast Cancer. *Sensors* 2017, 17, 1572.
5. Teichgraeber, D.C.; Guirguis, M.S.; Whitman, G.J. Breast Cancer Staging: Updates in the AJCC Cancer Staging Manual, 8th Edition, and Current Challenges for Radiologists, From the AJR Special Series on Cancer Staging. *Am. J. Roentgenol.* 2021, 217, 278–290.
6. Kalli, S.; Semine, A.; Cohen, S.; Naber, S.P.; Makim, S.S.; Bahl, M. American Joint Committee on Cancer's Staging System for Breast Cancer, Eighth Edition: What the Radiologist Needs to Know. *Radiographics* 2018, 38, 1921–1933.

7. Tsang, J.Y.S.; Tse, G.M. Molecular Classification of Breast Cancer. *Adv. Anat. Pathol.* 2019, 27, 27–35.
8. Kumar, P.; Aggarwal, R. An overview of triple-negative breast cancer. *Arch. Gynecol. Obstet.* 2016, 293, 247–269.
9. Jackson, H.W.; Fischer, J.R.; Zanotelli, V.R.T.; Ali, H.R.; Mehera, R.; Soysal, S.D.; Moch, H.; Muenst, S.; Varga, Z.; Weber, W.P.; et al. The single-cell pathology landscape of breast cancer. *Nature* 2020, 578, 615–620.
10. Yeo, S.K.; Guan, J.-L. Breast Cancer: Multiple Subtypes within a Tumor? *Trends Cancer* 2017, 3, 753–760.
11. Sukumar, J.; Gast, K.; Quiroga, D.; Lustberg, M.; Williams, N. Triple-negative breast cancer: Promising prognostic biomarkers currently in development. *Expert Rev. Anticancer. Ther.* 2020, 21, 135–148.
12. Saponaro, C.; Scarpi, E.; Sonnessa, M.; Cioffi, A.; Buccino, F.; Giotta, F.; Pastena, M.I.; Zito, F.A.; Mangia, A. Prognostic Value of NLRP3 Inflammasome and TLR4 Expression in Breast Cancer Patients. *Front. Oncol.* 2021, 11, 705331.
13. Faria, S.S.; Costantini, S.; de Lima, V.C.C.; de Andrade, V.P.; Rialland, M.; Cedric, R.; Budillon, A.; Magalhaes, K.G. NLRP3 inflammasome-mediated cytokine production and pyroptosis cell death in breast cancer. *J. Biomed. Sci.* 2021, 28, 26.
14. Tezcan, G.; Martynova, E.V.; Gilazieva, Z.E.; McIntyre, A.; Rizvanov, A.A.; Khaiboullina, S.F. MicroRNA Post-transcriptional Regulation of the NLRP3 Inflammasome in Immunopathologies. *Front. Pharmacol.* 2019, 10, 451.
15. Liu, J.; Zhao, G.; Liu, X.-L.; Zhang, G.; Zhao, S.-Q.; Zhang, S.-L.; Luo, L.-H.; Yin, D.-C.; Zhang, C.-Y. Progress of non-coding RNAs in triple-negative breast cancer. *Life Sci.* 2021, 272, 119238.
16. Ding, X.-F. Roles of miRNA and lncRNA in triple-negative breast cancer. *J. Zhejiang Univ. Sci. B* 2020, 21, 673–689.
17. Zamani, P.; Oskuee, R.K.; Atkin, S.L.; Navashenaq, J.G.; Sahebkar, A. MicroRNAs as important regulators of the NLRP3 inflammasome. *Prog. Biophys. Mol. Biol.* 2019, 150, 50–64.
18. Zhang, L.; Li, H.; Zang, Y.; Wang, F. NLRP3 inflammasome inactivation driven by miR-223-3p reduces tumor growth and increases anticancer immunity in breast cancer. *Mol. Med. Rep.* 2019, 19, 2180–2188.
19. Lyons, T.G. Targeted Therapies for Triple-Negative Breast Cancer. *Curr. Treat. Options Oncol.* 2019, 20, 82.
20. Lehmann, B.D.; Bauer, J.A.; Chen, X.; Sanders, M.E.; Chakravarthy, A.B.; Shyr, Y.; Pietenpol, J.A. Identification of human triple-negative breast cancer subtypes and preclinical models for selection

of targeted therapies. *J. Clin. Investig.* 2011, **121**, 2750–2767.

21. Burstein, M.D.; Tsimelzon, A.; Poage, G.M.; Covington, K.R.; Contreras, A.; Fuqua, S.A.; Savage, M.I.; Osborne, C.K.; Hilsenbeck, S.G.; Chang, J.C.; et al. Comprehensive genomic analysis identifies novel subtypes and targets of triple-negative breast cancer. *Clin. Cancer Res.* 2015, **21**, 1688–1698.

22. Jézéquel, P.; Loussouarn, D.; Guérin-Charbonnel, C.; Campion, L.; Vanier, A.; Gouraud, W.; Lasla, H.; Guette, C.; Valo, I.; Verrièle, V.; et al. Gene-expression molecular subtyping of triple-negative breast cancer tumours: Importance of immune response. *Breast Cancer Res.* 2015, **17**, 43.

23. Hubalek, M.; Czech, T.; Müller, H. Biological Subtypes of Triple-Negative Breast Cancer. *Breast Care* 2017, **12**, 8–14.

24. Yin, L.; Duan, J.-J.; Bian, X.-W.; Yu, S.-C. Triple-negative breast cancer molecular subtyping and treatment progress. *Breast Cancer Res.* 2020, **22**, 61.

25. Abramson, V.G.; Lehmann, B.D.; Ballinger, T.J.; Pietenpol, J.A. Subtyping of triple-negative breast cancer: Implications for therapy. *Cancer* 2015, **121**, 8–16.

26. Bareche, Y.; Buisseret, L.; Gruosso, T.; Girard, E.; Venet, D.; Dupont, F.; Desmedt, C.; Larsimont, D.; Park, M.; Rothé, F.; et al. Unraveling Triple-Negative Breast Cancer Tumor Microenvironment Heterogeneity: Towards an Optimized Treatment Approach. *J. Natl. Cancer Inst.* 2020, **112**, 708–719.

27. Uscanga-Peralesa, G.I.; Santuario-Facio, S.K.; Ortiz-López, R. Triple negative breast cancer: Deciphering the biology and heterogeneity. *Med. Univ.* 2016, **18**, 105–114.

28. Gibson, G.R.; Qian, D.; Ku, J.K.; Lai, L.L. Metaplastic Breast Cancer: Clinical Features and Outcomes. *Am. Surg.* 2005, **71**, 725–730.

29. Hayes, M.J.; Thomas, D.; Emmons, A.; Giordano, T.J.; Kleer, C.G. Genetic Changes of Wnt Pathway Genes Are Common Events in Metaplastic Carcinomas of the Breast. *Clin. Cancer Res.* 2008, **14**, 4038–4044.

30. Gerratana, L.; Basile, D.; Buono, G.; De Placido, S.; Giuliano, M.; Minichillo, S.; Coinu, A.; Martorana, F.; De Santo, I.; Del Mastro, L.; et al. Androgen receptor in triple negative breast cancer: A potential target for the targetless subtype. *Cancer Treat. Rev.* 2018, **68**, 102–110.

31. Ahn, S.G.; Kim, S.J.; Kim, C.; Jeong, J. Molecular Classification of Triple-Negative Breast Cancer. *J. Breast Cancer* 2016, **19**, 223–230.

32. Jiang, Y.-Z.; Ma, D.; Suo, C.; Shi, J.; Xue, M.; Hu, X.; Xiao, Y.; Yu, K.-D.; Liu, Y.-R.; Yu, Y.; et al. Genomic and Transcriptomic Landscape of Triple-Negative Breast Cancers: Subtypes and Treatment Strategies. *Cancer Cell* 2019, **35**, 428–440.e5.

33. Mahmoud, R.; Ordonez-Moran, P.; Allegrucci, C. Challenges for Triple Negative Breast Cancer Treatment: Defeating Heterogeneity and Cancer Stemness. *Cancers* **2022**, *14*, 4280.

34. Molchanov, O.; Maistrenko, D.; Granov, D.; Vasina, L.; Popova, A.; Vasilevskaya, I.; Mikolaichuk, O.; Shemchuk, O.; Protas, A.; Sharoyko, V.; et al. Biomarkers and potential targets for immune and cellular therapy in triple negative breast cancer. *Cell. Ther. Transplant.* **2022**, *11*, 16–30.

35. Lehmann, B.D.; Pienpol, J.A. Identification and use of biomarkers in treatment strategies for triple-negative breast cancer subtypes. *J. Pathol.* **2014**, *232*, 142–150.

36. Li, Y.; Zhang, H.; Merkher, Y.; Chen, L.; Liu, N.; Leonov, S.; Chen, Y. Recent advances in therapeutic strategies for triple-negative breast cancer. *J. Hematol. Oncol.* **2022**, *29*, 121.

37. Ghafouri, S.R.; Guvvala, S.; Jones, C.; Philipovskiy, A. Recently approved treatment options for patients with metastatic triple-negative and HER2-neu-positive breast cancer. *J. Investig. Med.* **2022**, *70*, 1329–1341.

38. Xiao, Y.; Ma, D.; Zhao, S.; Suo, C.; Shi, J.; Xue, M.-Z.; Ruan, M.; Wang, H.; Zhao, J.; Li, Q.; et al. Multi-Omics Profiling Reveals Distinct Microenvironment Characterization and Suggests Immune Escape Mechanisms of Triple-Negative Breast Cancer. *Clin. Cancer Res.* **2019**, *25*, 5002–5014.

39. Heusinkveld, M.; van der Burg, S.H. Identification and manipulation of tumor associated macrophages in human cancers. *J. Transl. Med.* **2011**, *9*, 216.

40. Luo, Y.; Zhou, H.; Krueger, J.; Kaplan, C.; Lee, S.H.; Dolman, C.; Markowitz, D.; Wu, W.; Liu, C.; Reisfeld, R.A.; et al. Targeting tumor-associated macrophages as a novel strategy against breast cancer. *J. Clin. Investig.* **2006**, *116*, 2132–2141.

41. Prasmickaite, L.; Tenstad, E.M.; Pettersen, S.; Jabeen, S.; Egeland, E.V.; Nord, S.; Pandya, A.; Haugen, M.H.; Kristensen, V.N.; Børresen-Dale, A.; et al. Basal-like breast cancer engages tumor-supportive macrophages via secreted factors induced by extracellular S100A4. *Mol. Oncol.* **2018**, *12*, 1540–1558.

42. Pe, K.C.S.; Saetung, R.; Yodsurang, V.; Chaotham, C.; Suppapat, K.; Chanvorachote, P.; Tawinwung, S. Triple-negative breast cancer influences a mixed M1/M2 macrophage phenotype associated with tumor aggressiveness. *PLoS ONE* **2022**, *17*, e0273044.

43. Mehta, A.K.; Kadel, S.; Townsend, M.G.; Oliwa, M.; Guerriero, J.L. Macrophage Biology and Mechanisms of Immune Suppression in Breast Cancer. *Front. Immunol.* **2021**, *12*, 643771.

44. Lee, K.Y. M1 and M2 polarization of macrophages: A mini-review. *Med. Biol. Sci. Eng.* **2019**, *2*, 1–5.

45. Martinon, F.; Burns, K.; Tschopp, J. The Inflammasome: A molecular platform triggering activation of inflammatory caspases and processing of proIL- β . *Mol. Cell* **2002**, *10*, 417–426.

46. Ershaid, N.; Sharon, Y.; Doron, H.; Raz, Y.; Shani, O.; Cohen, N.; Monteran, L.; Leider-Trejo, L.; Ben-Shmuel, A.; Yassin, M.; et al. NLRP3 inflammasome in fibroblasts links tissue damage with inflammation in breast cancer progression and metastasis. *Nat. Commun.* 2019, 10, 4375.

47. George, M.A.; Lustberg, M.B.; Orchard, T.S. Psychoneurological symptom cluster in breast cancer: The role of inflammation and diet. *Breast Cancer Res. Treat.* 2020, 184, 1–9.

48. Sonnessa, M.; Cioffi, A.; Brunetti, O.; Silvestris, N.; Zito, F.A.; Saponaro, C.; Mangia, A. NLRP3 Inflammasome From Bench to Bedside: New Perspectives for Triple Negative Breast Cancer. *Front. Oncol.* 2020, 10, 1587.

49. Medina, M.A.; Oza, G.; Sharma, A.; Arriaga, L.G.; Hernandez, J.M.; Rotello, V.M.; Ramirez, J.T. Triple-Negative Breast Cancer: A Review of Conventional and Advanced Therapeutic Strategies. *Int. J. Environ. Res. Public Health* 2020, 17, 2078.

50. Pauls, M.; Chia, S.; LeVasseur, N. Current and New Novel Combination Treatments for Metastatic Triple-Negative Breast Cancer. *Curr. Oncol.* 2022, 29, 4748–4767.

51. Carey, L.A.; Dees, E.C.; Sawyer, L.; Gatti, L.; Moore, D.T.; Collichio, F.; Ollila, D.W.; Sartor, C.I.; Graham, M.L.; Perou, C.M. The Triple Negative Paradox: Primary Tumor Chemosensitivity of Breast Cancer Subtypes. *Clin. Cancer Res.* 2007, 13, 2329–2334.

52. Martín, M.; Ruiz, A.; Ruiz Borrego, M.; Barnadas, A.; González, S.; Calvo, L.; Vila, M.M.; Antón, A.; Rodríguez-Lescure, A.; Seguí-Palmer, M.A.; et al. Fluorouracil, Doxorubicin, and Cyclophosphamide (FAC) Versus FAC Followed by Weekly Paclitaxel As Adjuvant Therapy for High-Risk, Node-Negative Breast Cancer: Results From the GEICAM/2003-02 Study. *J. Clin. Oncol.* 2013, 31, 2593–2599.

53. Park, J.H.; Ahn, J.-H.; Kim, S.-B. How shall we treat early triple-negative breast cancer (TNBC): From the current standard to upcoming immuno-molecular strategies. *ESMO Open* 2018, 3, e000357.

54. Bou Zerdan, M.; Ghorayeb, T.; Saliba, F.; Allam, S.; Bou Zerdan, M.; Yaghi, M.; Bilani, N.; Jaafar, R.; Nahleh, Z. Triple Negative Breast Cancer: Updates on Classification and Treatment in 2021. *Cancers* 2022, 14, 1253.

55. Emens, L.A. Breast Cancer Immunotherapy: Facts and Hopes. *Clin. Cancer Res.* 2018, 24, 511–520.

56. Pandy, J.G.P.; Balolong-Garcia, J.C.; Cruz-Ordinario, M.V.B.; Que, F.V.F. Triple negative breast cancer and platinum-based systemic treatment: A meta-analysis and systematic review. *BMC Cancer* 2019, 19, 1253.

57. Liu, M.; Mo, Q.-G.; Wei, C.-Y.; Qin, Q.-H.; Huang, Z.; He, J. Platinum-based chemotherapy in triple-negative breast cancer: A meta-analysis. *Oncol. Lett.* 2012, 5, 983–991.

58. Bian, L.; Yu, P.; Wen, J.; Na Li, N.; Huang, W.; Xie, X.; Ye, F. Survival benefit of platinum-based regimen in early stage triple negative breast cancer: A meta-analysis of randomized controlled trials. *npj Breast Cancer* 2021, 7, 157.

59. Thu, K.L.; Soria-Bretones, I.; Mak, T.W.; Cescon, D.W. Targeting the cell cycle in breast cancer: Towards the next phase. *Cell Cycle* 2018, 17, 1871–1885.

60. Sun, H.; Zhang, D.; Yao, Z.; Lin, X.; Liu, J.; Gu, Q.; Dong, X.; Liu, F.; Wang, Y.; Yao, N.; et al. Anti-angiogenic treatment promotes triple-negative breast cancer invasion via vasculogenic mimicry. *Cancer Biol. Ther.* 2017, 18, 205–213.

61. Zhu, K.; Wu, Y.; He, P.; Fan, Y.; Zhong, X.; Zheng, H.; Luo, T. PI3K/AKT/mTOR-Targeted Therapy for Breast Cancer. *Cells* 2022, 11, 2508.

62. Costa, R.L.B.; Han, H.S.; Gradishar, W.J. Targeting the PI3K/AKT/mTOR pathway in triple-negative breast cancer: A review. *Breast Cancer Res. Treat.* 2018, 169, 397–406.

63. Khan, M.A.; Jain, V.K.; Rizwanullah, M.; Ahmad, J.; Jain, K. PI3K/AKT/mTOR pathway inhibitors in triple-negative breast cancer: A review on drug discovery and future challenges. *Drug Discov. Today* 2019, 24, 2181–2191.

64. Singh, D.D.; Parveen, A.; Yadav, D.K. Role of PARP in TNBC: Mechanism of Inhibition, Clinical Applications, and Resistance. *Biomedicines* 2021, 9, 1512.

65. Maennling, A.E.; Tur, M.K.; Niebert, M.; Klockenbring, T.; Zeppernick, F.; Gattenlöhner, S.; Meinholt-Heerlein, I.; Hussain, A.F. Molecular Targeting Therapy against EGFR Family in Breast Cancer: Progress and Future Potentials. *Cancers* 2019, 11, 1826.

66. Liu, C.-Y.; Lau, K.-Y.; Hsu, C.-C.; Chen, J.-L.; Lee, C.-H.; Huang, T.-T.; Chen, Y.-T.; Huang, C.-T.; Lin, P.-H.; Tseng, L.-M. Combination of palbociclib with enzalutamide shows in vitro activity in RB proficient and androgen receptor positive triple negative breast cancer cells. *PLoS ONE* 2017, 12, e0189007.

Retrieved from <https://encyclopedia.pub/entry/history/show/92951>