
Intelligent Source Code Completion Assistants | Encyclopedia.pub

https://encyclopedia.pub/entry/53887 1/5

Intelligent Source Code Completion Assistants
Subjects: Computer Science, Artificial Intelligence

Contributor: Tilen Hliš , Luka Četina , Tina Beranič , Luka Pavlič

As artificial intelligence advances, source code completion assistants are becoming more advanced and powerful.

Existing traditional assistants are no longer up to all the developers’ challenges. Traditional assistants usually

present proposals in alphabetically sorted lists, which does not make a developer’s tasks any easier (i.e., they still

have to search and filter an appropriate proposal manually). As a possible solution to the presented issue,

intelligent assistants that can classify suggestions according to relevance in particular contexts have emerged.

Artificial intelligence methods have proven to be successful in solving such problems. Advanced intelligent

assistants not only take into account the context of a particular source code but also, more importantly, examine

other available projects in detail to extract possible patterns related to particular source code intentions. This is how

intelligent assistants try to provide developers with relevant suggestions.

intelligent assistants source code completion source code

1. Introduction

With the ever-faster development of artificial intelligence, attempts are being made to introduce this technology into

various professional fields. For example, the application of artificial intelligence methods has already shown results

during requirements generation and processing, project planning, and intelligent software design, as well as the

areas of architecture, development, testing, and analysis, among others. In the software engineering domain, there

are two main possibilities for artificial intelligence applications: (a) a natural language interpreter and (b) a tool to

improve a developer’s productivity by predicting and completing a source code automatically.

In order to survive in the highly competitive software development market, developers must deliver good products

quickly. Many approaches and tools help developers reduce development time while improving the quality of the

final product simultaneously. Among these approaches are assistants for completing a source code, which, with the

inclusion of artificial intelligence methods, are on the rise again. They help developers by improving their

productivity, from reducing typing errors and common defects to suggesting entire source code segments. Even

traditional code completion assistants are rich in functionality. They typically display relevant documentation in pop-

up windows, provide a preview of accessible methods and object attributes, provide variable and method name

completion, and enable the generation of template-based source code sections (e.g., try-catch blocks, for-each

loops, etc.). However, traditional assistants cannot generate “smart” suggestions. When generating source code

suggestions, they usually rely on the information about the type of the current variable and the variables that the

user has already defined in the program . Although they consider the already-written program, they cannot

understand the developer’s intentions and suggest all syntactically appropriate methods or variables .

[1]

[1][2]

Intelligent Source Code Completion Assistants | Encyclopedia.pub

https://encyclopedia.pub/entry/53887 2/5

Due to the presented limitations, intelligent source code completion assistants, which expand the scope of

functionality with the help of artificial intelligence methods, are a promising alternative. Depending on the context,

they can predict the developers’ intent and, thus, find the most suitable methods, even adapting them to the target

situation and placing them at the top of the suggestions list. They can also generate more relevant sections of

source code by considering the context of the program and developers’ intent (e.g., suppose that a developer

creates a variable with a name that implies the use of dates. In that case, the intelligent assistant will automatically

suggest and prepare a relevant section of source code that assigns a new object of the type “Date” to the variable)

. Although intelligent assistants are on the rise , only some are available to the general public in a limited range;

others offer a limited set of functionalities . Many intelligent assistants promise to speed up development and

reduce the number of typos and defects in the source code with more relevant suggestions. Likewise, their

providers claim that they cannot only complete the current sentence but also generate entire sections of relevant

source code automatically. This raises the question of whether helpers are already at the stage where they benefit

developers by reducing the number of defects and shortening the time of writing code.

2. Intelligent Source Code Completion Assistants

2.1. Intelligent vs. Traditional Source Code Completion Assistants

Traditional source code completion assistants usually list all the attributes or methods that are available at a certain

point of the source code, usually after “.” is pressed. The developer can then select an appropriate method from an

alphabetically ordered list. The process is often slower than writing the method’s name manually . As a result,

the authors identified a need for more intelligent assistants that would not arrange suggestions on an alphabetical

basis but rather in a relevance-based order. Artificial intelligence methods have been employed to supplement the

source code, proving to be very promising in source code modelling . The main functionalities of traditional

assistants that were reported in primary studies are summarised in Table 1.

Table 1. The main functionalities of traditional source code completion assistants.

Unlike traditional source code completion assistants, intelligent assistants consider the context from both the

current program and various other projects to recognise common patterns. By discerning these patterns, they can

gauge the developer’s intent. This determination often hinges on variable names or method sequences, leading to

contextually relevant suggestions. Instead of offering all possible suggestions like traditional assistants, intelligent

[3] [4]

[5]

[2][6]

[1][7]

Functionalities Sources

Completing the current word

Predicting the most likely next unit of source code (showing a list of suggestions)

Display of all possible candidates and documentation

Source code completion based on templates (for/while loop, iterator)

[8][9][10][11]

[6][8][10][12][13][14][15]

[16][17][18]

[9][17]

Intelligent Source Code Completion Assistants | Encyclopedia.pub

https://encyclopedia.pub/entry/53887 3/5

ones provide those aligned with recognised patterns, streamlining the developer’s task. While the current state-of-

the-art does not alleviate developers entirely, it can automate the writing of frequently used and proven code

sections. This automation lets developers concentrate on more complex, creative challenges . The effectiveness

of this approach is contingent on vast datasets that the intelligent assistant learns from. Without the plethora of

open-source projects on repositories like GitHub, AI-based code completion would not be feasible. Table 2 outlines

the functionalities that intelligent assistants offer beyond the traditional ones.

Table 2. The main functionalities of intelligent source code completion assistants.

The primary function of intelligent assistants is their ability to determine which elements come after the current one

based on the existing source code . The intelligent assistants try to relieve developers from thinking about the

names of methods, variables, and other source code elements without requiring developers to write a single letter.

When developers are under constant pressure to deliver high-quality source code in the shortest possible time,

using tools that allow the generation of program continuation suggestions is essential. The tools can save a lot of

work , speed up development , and, as a result, increase the productivity of developers . Assistants

based on artificial intelligence differ from traditional ones in that, when they generate suggestions for program

continuation, they use the information available not only at the time of compilation but also from common patterns

found in various freely accessible repositories . Thus, in addition to the already defined source code elements,

they can propose those not yet present in the local context (eng. zero-day source code tokens) . An essential

feature of intelligent assistants is that they generate suggestions and rank them by relevance. The best suggestion

should always appear at the top of the list so that developers only need to check the first few entries instead of

searching through the entire list. Through machine learning methods, intelligent assistants can generate longer and

more complex suggestions, ranging from simple words to complete sections of source code.

The following standard functionality suggests a suitable API and shows an API usage example (including

parameters) adapted to the current context. Developers do not write all parts of the program source code

themselves but find a library that meets their requirements and then use it. Since so many libraries exist, deciding

which one to use is often quite challenging. Here, again, intelligent assistants can help developers make their work

easier by suggesting which library to use at a given location by considering the already written program . The

References

1. Hussain, Y.; Huang, Z.; Zhou, Y.; Wang, S. DeepVS: An Efficient and Generic Approach for
Source Code Modeling Usage. arXiv 2019, arXiv:1910.06500.

2. Svyatkovskiy, A.; Lee, S.; Hadjitofi, A.; Riechert, M.; Franco, J.; Allamanis, M. Fast and Memory-
Efficient Neural Code Completion. arXiv 2020, arXiv:2004.13651.

3. Yang, B.; Zhang, N.; Li, S.; Xia, X. Survey of intelligent code completion. Ruan Jian Xue Bao/J.
Softw. 2020, 31, 1435.

4. Ernst, N.A.; Bavota, G. AI-Driven Development Is Here: Should You Worry? IEEE Softw. 2022, 39,
106–110.

5. GitHub Copilot. GitHub Copilot Your AI Pair Programmer. 2022. Available online:
https://copilot.github.com/ (accessed on 24 October 2022).

6. Svyatkovskiy, A.; Zhao, Y.; Fu, S.; Sundaresan, N. Pythia: AI-assisted Code Completion System.
arXiv 2019, arXiv:1912.00742.

7. Hussain, Y.; Huang, Z.; Zhou, Y.; Wang, S. Deep Transfer Learning for Source Code Modeling.
arXiv 2019, arXiv:1910.05493.

8. Terada, K.; Watanobe, Y. Code Completion for Programming Education based on Recurrent
Neural Network. In Proceedings of the 2019 IEEE 11th International Workshop on Computational
Intelligence and Applications (IWCIA), Hiroshima, Japan, 9–10 November 2019; pp. 109–114.

9. Chen, C.; Peng, X.; Sun, J.; Xing, Z.; Wang, X.; Zhao, Y.; Zhang, H.; Zhao, W. Generative API
usage code recommendation with parameter concretization. Sci. China Inf. Sci. 2019, 62, 192103.

10. Schumacher, M.E.H.; Le, K.T.; Andrzejak, A. Improving Code Recommendations by Combining
Neural and Classical Machine Learning Approaches. In Proceedings of the IEEE/ACM 42nd
International Conference on Software Engineering Workshops, ICSEW’20, Seoul, Republic of
Korea, 23–29 May 2020; pp. 476–482.

11. Li, J.; Huang, R.; Li, W.; Yao, K.; Tan, W. Toward Less Hidden Cost of Code Completion with
Acceptance and Ranking Models. arXiv 2021, arXiv:2106.13928.

12. Hu, X.; Li, G.; Liu, F.; Jin, Z. Program Generation and Code Completion Techniques Based on
Deep Learning: Literature Review. Ruan Jian Xue Bao/J. Softw. 2019, 30, 1223.

13. Kalyon, M.S.; Akgul, Y.S. A Two Phase Smart Code Editor. In Proceedings of the 2021 3rd
International Congress on Human-Computer Interaction, Optimization and Robotic Applications
(HORA), Ankara, Turkey, 11–13 June 2021; pp. 1–4.

14. Karampatsis, R.M.; Babii, H.; Robbes, R.; Sutton, C.; Janes, A. Big code != big vocabulary. In
Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering, Seoul,

[13]

Functionalities Sources

Completing the current word (names of methods, variables, attributes, …)

Generating context-sensitive program continuation suggestions

Displaying information about the methods and attributes of the current object (explore
API)

Generating new variable or method name suggestions

Generating natural language based on source code continuation suggestions (considers
method and variable names and comments)

[6][8][17]

[2][3][4][8][13][15][19][20]

[21][22][23]

[2][6][10]

[1]

[7]

[11]

[22] [7] [16][17]

[6]

[1][8]

[9] [15]

Intelligent Source Code Completion Assistants | Encyclopedia.pub

https://encyclopedia.pub/entry/53887 4/5

intelligent assistants also show an example of the proposed API, which allows developers to instantly assess

whether the API is suitable for them and learn how to use it . Intelligent assistants maximise the relevance of

the displayed use case and adapt it to the needs of the current context with the help of artificial intelligence .

Some intelligent assistants can use objects from the local context as parameters when generating the API use

case.

Assistants based on artificial intelligence enhance traditional ones by not only suggesting the existing variables and

methods defined in the program but also by offering advanced naming suggestions. Specifically, they can predict

meaningful names for variables or methods based on the context, even proposing entirely new names that are not

present in the local context . This prediction considers the names of existing variables, methods, and even

comments within the program . Similar to traditional assistants, intelligent ones allow developers to explore APIs

by displaying a list of all available methods and attributes. However, these results are typically ranked by relevance

rather than in alphabetical order . With the help of these data, they can determine the developer’s intention and

generate a proposal that is as relevant as possible to the developer. In practice, the assistant will gather enough

data based on the comment and method name to write the method body. As a rule, it will not be able to do this in

all cases. However, it will make the developer’s work significantly easier by generating suggestions based on

natural language, even if only occasionally.

2.2. Leading Intelligent Source Code Completion Assistant Comparison

GitHub Copilot has garnered significant attention recently. Developed by GitHub in collaboration with OpenAI, this

assistant offers program continuation suggestions based on the context from comments and source code. It utilises

the Codex language model, an evolution of the GPT-3 model by OpenAI. Codex translates natural language into

source code, learning from open repositories on GitHub .

Tabnine (previously Codota) employs OpenAI’s GPT-2 transformer. Its primary function is to predict and suggest

the subsequent unit of source code, typically the next word or line .

Kite, similar to Tabnine, is built on OpenAI’s GPT-2 model. It suggests the next word or line of source code using

local context and open-source samples. In addition to code completion, Kite displays documentation for nearby

objects. To use Kite, users must install an additional application alongside the development environment plugin .

IntelliCode, rooted in Microsoft’s IntelliSense, is designed for Visual Studio and Visual Studio Code. Trained on a

GPT-2 transformer, it learned from numerous public GitHub repositories. IntelliCode suggests the next program

word, considering local context, repository metadata, and official documentation. IntelliCode Compose, an

enhancement, emphasises completing entire code lines using the GPT-C model, a GPT-2 variant. It is still under

development and exclusive to Microsoft developers .

Three other intelligent assistants identified in the primary studies include CACHECA, which was designed for

Eclipse and based on a modified n-gram model, focusing on the current file . Pythia is under development,

leveraging the GPT-2 model trained on select high-quality open-source projects . Lastly, the open-source Galois

Republic of Korea, 27 June–19 July 2020; ACM: New York, NY, USA, 2020.

15. Nguyen, P.T.; Di Rocco, J.; Di Ruscio, D.; Ochoa, L.; Degueule, T.; Di Penta, M. FOCUS: A
Recommender System for Mining API Function Calls and Usage Patterns. In Proceedings of the
2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE), Montreal, QC,
Canada, 25–31 May 2019; pp. 1050–1060.

16. Yang, K.; Yu, H.; Fan, G.; Yang, X.; Huang, Z. A Graph Sequence Neural Architecture for Code
Completion with Semantic Structure Features. J. Softw. Evol. Process 2022, 34, e2414.

17. Nguyen, S.V.; Nguyen, T.N.; Li, Y.; Wang, S. Combining Program Analysis and Statistical
Language Model for Code Statement Completion. arXiv 2019, arXiv:1911.07781.

18. Zhong, C.; Yang, M.; Sun, J. JavaScript Code Suggestion Based on Deep Learning. In
Proceedings of the 2019 3rd International Conference on Innovation in Artificial Intelligence, ICIAI
2019, Suzhou, China, 15–18 March 2019; pp. 145–149.

19. Aye, G.A.; Kim, S.; Li, H. Learning Autocompletion from Real-World Datasets. arXiv 2020,
arXiv:2011.04542.

20. Ciniselli, M.; Cooper, N.; Pascarella, L.; Poshyvanyk, D.; Di Penta, M.; Bavota, G. An Empirical
Study on the Usage of BERT Models for Code Completion. arXiv 2021, arXiv:2103.07115.

21. Wang, Y.; Li, H. Code Completion by Modeling Flattened Abstract Syntax Trees as Graphs. arXiv
2021, arXiv:2103.09499.

22. Arkesteijn, Y.; Saldanha, N.; Kostense, B. Code Completion using Neural Attention and Byte Pair
Encoding. arXiv 2020, arXiv:2004.06343.

23. Hu, X.; Men, R.; Li, G.; Jin, Z. Deep-AutoCoder: Learning to Complete Code Precisely with
Induced Code Tokens. In Proceedings of the 2019 IEEE 43rd Annual Computer Software and
Applications Conference (COMPSAC), Milwaukee, WI, USA, 15–19 July 2019; Volume 1, pp.
159–168.

24. Tabnine. Tabnine Docs. 2022. Available online: https://www.tabnine.com/ (accessed on 24
October 2022).

25. Kite. Kite-Free AI Coding Assitant and Code Auto-Complete Plugin. 2022. Available online:
https://www.kite.com/ (accessed on 24 October 2022).

26. Svyatkovskiy, A.; Deng, S.K.; Fu, S.; Sundaresan, N. IntelliCode Compose: Code Generation
Using Transformer. arXiv 2020, arXiv:2005.08025.

27. Franks, C.; Tu, Z.; Devanbu, P.; Hellendoorn, V. CACHECA: A Cache Language Model Based
Code Suggestion Tool. In Proceedings of the 2015 IEEE/ACM 37th IEEE International
Conference on Software Engineering, Florence, Italy, 16–24 May 2015; Volume 2, pp. 705–708.

[7][9][15]

[15]

[1][8]

[7]

[20]

[5]

[24]

[25]

[26]

[27]

[6]

Intelligent Source Code Completion Assistants | Encyclopedia.pub

https://encyclopedia.pub/entry/53887 5/5

assistant, which is environment-independent and built on GPT-2, can suggest multiple words but not full lines of

code .

Recently, the landscape of intelligent code completion has been profoundly transformed by the advent of more

sophisticated AI models. Prominently, GPT-3 and GPT-4, developed by OpenAI , have emerged as game-

changers. These models have significantly advanced the capabilities of intelligent assistants in understanding and

generating code, offering a more context-aware, nuanced approach than their predecessors . GitHub Copilot,

initially leveraging OpenAI’s Codex model based on GPT-3, has now been updated to GPT-4 with its new version,

Copilot X, introducing features like Copilot Chat . This enables a ChatGPT-like experience, allowing developers

to discuss specific code segments for better understanding or modification, even via voice input. Another notable

tool is Codeium , which provides AI-generated autocomplete in over 20 programming languages and integrates

directly with various IDEs. It accelerates development by offering rapid multiline code suggestions and reducing the

time spent on searching APIs and documentation . The emergence of such tools is not just limited to IDE plugins

but extends to various platforms, including those specifically designed for developers. The development of these

tools is progressing so rapidly that new and innovative solutions are being introduced in short periods, continually

enhancing the programming landscape.

2.3. Issues and Main Challenges in Intelligent Source Code Completion

While intelligent source code completion tools have significantly enhanced software development, several open

issues and challenges remain to be addressed. This section explores these challenges and their implications for

the effectiveness of these tools.

In the field of intelligent source code completion, several challenges persist that impact the effectiveness of these

advanced tools. A key area is the alignment of automated testing methodologies with the suggestions made by

intelligent code completion tools. The accuracy and relevance of these suggestions are paramount, as they can

significantly influence the efficiency and effectiveness of automated testing processes .

Furthermore, the formal verification and validation of code generated by AI assistants present unique challenges.

Ensuring the reliability and correctness of this code is critical, particularly in high-stakes applications where the

consequences of errors are significant .

Additionally, a major limitation of current AI methodologies is their ability to fully understand and predict developer

intent. This limitation can compromise the quality and applicability of the code completion suggestions,

underscoring the need for ongoing research to enhance the interpretative capabilities of AI in software

development environments .

These challenges highlight the need for continued research and development in the field of intelligent source code

completion. Addressing these issues will not only improve the current tools but also pave the way for more

advanced and reliable AI-driven development environments.

28. Galois Autocompleter. 2022. Available online: https://github.com/MicrosoftDocs/intellicode/
(accessed on 24 October 2022).

29. OpenAI. Better Language Models and Their Implications. 2019. Available online:
https://openai.com/blog/better-language-models/ (accessed on 24 October 2022).

30. OpenAI. GPT-4 Technical Report. arXiv 2023, arXiv:2303.08774.

31. codeium. 2022. Available online: https://codeium.com/ (accessed on 24 November 2023).

32. Ricca, F.; Marchetto, A.; Stocco, A. AI-based Test Automation: A Grey Literature Analysis. In
Proceedings of the 2021 IEEE International Conference on Software Testing, Verification and
Validation Workshops (ICSTW), Valencia, Spain, 12–16 April 2021; pp. 263–270.

33. Vaithilingam, P.; Zhang, T.; Glassman, E.L. Expectation vs. Experience: Evaluating the Usability of
Code Generation Tools Powered by Large Language Models. In Proceedings of the Extended
Abstracts of the 2022 CHI Conference on Human Factors in Computing Systems, CHI EA ’22,
New Orleans, LA, USA, 29 April–5 May 2022.

34. Barke, S.; James, M.B.; Polikarpova, N. Grounded Copilot: How Programmers Interact with Code-
Generating Models. Proc. ACM Program. Lang. 2023, 7, 85–111.

Retrieved from https://encyclopedia.pub/entry/history/show/121745

[28]

[29]

[30]

[5]

[31]

[31]

[32]

[33]

[34]

