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As artificial intelligence advances, source code completion assistants are becoming more advanced and powerful.
Existing traditional assistants are no longer up to all the developers’ challenges. Traditional assistants usually
present proposals in alphabetically sorted lists, which does not make a developer’s tasks any easier (i.e., they still
have to search and filter an appropriate proposal manually). As a possible solution to the presented issue,
intelligent assistants that can classify suggestions according to relevance in particular contexts have emerged.
Artificial intelligence methods have proven to be successful in solving such problems. Advanced intelligent
assistants not only take into account the context of a particular source code but also, more importantly, examine
other available projects in detail to extract possible patterns related to particular source code intentions. This is how

intelligent assistants try to provide developers with relevant suggestions.

intelligent assistants source code completion source code

| 1. Introduction

With the ever-faster development of artificial intelligence, attempts are being made to introduce this technology into
various professional fields. For example, the application of artificial intelligence methods has already shown results
during requirements generation and processing, project planning, and intelligent software design, as well as the
areas of architecture, development, testing, and analysis, among others. In the software engineering domain, there
are two main possibilities for artificial intelligence applications: (a) a natural language interpreter and (b) a tool to

improve a developer’s productivity by predicting and completing a source code automatically.

In order to survive in the highly competitive software development market, developers must deliver good products
quickly. Many approaches and tools help developers reduce development time while improving the quality of the
final product simultaneously. Among these approaches are assistants for completing a source code, which, with the
inclusion of artificial intelligence methods, are on the rise again. They help developers by improving their
productivity, from reducing typing errors and common defects to suggesting entire source code segments. Even
traditional code completion assistants are rich in functionality. They typically display relevant documentation in pop-
up windows, provide a preview of accessible methods and object attributes, provide variable and method name
completion, and enable the generation of template-based source code sections (e.g., try-catch blocks, for-each
loops, etc.). However, traditional assistants cannot generate “smart” suggestions. When generating source code
suggestions, they usually rely on the information about the type of the current variable and the variables that the
user has already defined in the program . Although they consider the already-written program, they cannot

understand the developer’s intentions and suggest all syntactically appropriate methods or variables [1I2],
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Due to the presented limitations, intelligent source code completion assistants, which expand the scope of
functionality with the help of artificial intelligence methods, are a promising alternative. Depending on the context,
they can predict the developers’ intent and, thus, find the most suitable methods, even adapting them to the target
situation and placing them at the top of the suggestions list. They can also generate more relevant sections of
source code by considering the context of the program and developers’ intent (e.g., suppose that a developer
creates a variable with a name that implies the use of dates. In that case, the intelligent assistant will automatically
suggest and prepare a relevant section of source code that assigns a new object of the type “Date” to the variable)
8. Although intelligent assistants are on the rise 4], only some are available to the general public in a limited range;
others offer a limited set of functionalities 2. Many intelligent assistants promise to speed up development and
reduce the number of typos and defects in the source code with more relevant suggestions. Likewise, their
providers claim that they cannot only complete the current sentence but also generate entire sections of relevant
source code automatically. This raises the question of whether helpers are already at the stage where they benefit

developers by reducing the number of defects and shortening the time of writing code.

| 2. Intelligent Source Code Completion Assistants
2.1. Intelligent vs. Traditional Source Code Completion Assistants

Traditional source code completion assistants usually list all the attributes or methods that are available at a certain
point of the source code, usually after “.” is pressed. The developer can then select an appropriate method from an
alphabetically ordered list. The process is often slower than writing the method’s name manually 2E. As a result,
the authors identified a need for more intelligent assistants that would not arrange suggestions on an alphabetical
basis but rather in a relevance-based order. Artificial intelligence methods have been employed to supplement the
source code, proving to be very promising in source code modelling . The main functionalities of traditional

assistants that were reported in primary studies are summarised in Table 1.

Table 1. The main functionalities of traditional source code completion assistants.

Functionalities Sources
Completing the current word (BI9I[L0][11]
Predicting the most likely next unit of source code (showing a list of suggestions) ()[8)[10/112][1]{14][15]
Display of all possible candidates and documentation (16][17][18]
Source code completion based on templates (for/while loop, iterator) (BIL7]

Unlike traditional source code completion assistants, intelligent assistants consider the context from both the
current program and various other projects to recognise common patterns. By discerning these patterns, they can
gauge the developer’s intent. This determination often hinges on variable names or method sequences, leading to

contextually relevant suggestions. Instead of offering all possible suggestions like traditional assistants, intelligent
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Referenecesse aligned with recognised patterns, streamlining the developer’s task. While the current state-of-
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12. Hu, X.; LI, G.; Liu, F,; Jin, Z. Program Generation and Code Completion Techniques Based on

searching through the entire list. Through machine_learning methaods, intelligent assistants can generate longer and
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more complex suggestions, ranging from simple words to complete sections of source code.
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leveraging the GPT-2 model trained on select high-quality open-source projects (8. Lastly, the open-source Galois
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While intelligent source code completion tools have significantly enhanced software development, several open

issues and challenges remain to be addressed. This section explores these challenges and their implications for

the effectiveness of these tools.

In the field of intelligent source code completion, several challenges persist that impact the effectiveness of these
advanced tools. A key area is the alignment of automated testing methodologies with the suggestions made by
intelligent code completion tools. The accuracy and relevance of these suggestions are paramount, as they can

significantly influence the efficiency and effectiveness of automated testing processes 221,

Furthermore, the formal verification and validation of code generated by Al assistants present unique challenges.
Ensuring the reliability and correctness of this code is critical, particularly in high-stakes applications where the

consequences of errors are significant [23,

Additionally, a major limitation of current Al methodologies is their ability to fully understand and predict developer
intent. This limitation can compromise the quality and applicability of the code completion suggestions,
underscoring the need for ongoing research to enhance the interpretative capabilities of Al in software

development environments 34!,

These challenges highlight the need for continued research and development in the field of intelligent source code
completion. Addressing these issues will not only improve the current tools but also pave the way for more

advanced and reliable Al-driven development environments.
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