Intelligent Source Code Completion Assistants | Encyclopedia.pub

Intelligent Source Code Completion Assistants

Subjects: Computer Science, Artificial Intelligence

Contributor: Tilen HIi§ , Luka Cetina , Tina Berani¢ , Luka Pavli¢

As artificial intelligence advances, source code completion assistants are becoming more advanced and powerful.
Existing traditional assistants are no longer up to all the developers’ challenges. Traditional assistants usually
present proposals in alphabetically sorted lists, which does not make a developer’s tasks any easier (i.e., they still
have to search and filter an appropriate proposal manually). As a possible solution to the presented issue,
intelligent assistants that can classify suggestions according to relevance in particular contexts have emerged.
Artificial intelligence methods have proven to be successful in solving such problems. Advanced intelligent
assistants not only take into account the context of a particular source code but also, more importantly, examine
other available projects in detail to extract possible patterns related to particular source code intentions. This is how

intelligent assistants try to provide developers with relevant suggestions.

intelligent assistants source code completion source code

| 1. Introduction

With the ever-faster development of artificial intelligence, attempts are being made to introduce this technology into
various professional fields. For example, the application of artificial intelligence methods has already shown results
during requirements generation and processing, project planning, and intelligent software design, as well as the
areas of architecture, development, testing, and analysis, among others. In the software engineering domain, there
are two main possibilities for artificial intelligence applications: (a) a natural language interpreter and (b) a tool to

improve a developer’s productivity by predicting and completing a source code automatically.

In order to survive in the highly competitive software development market, developers must deliver good products
quickly. Many approaches and tools help developers reduce development time while improving the quality of the
final product simultaneously. Among these approaches are assistants for completing a source code, which, with the
inclusion of artificial intelligence methods, are on the rise again. They help developers by improving their
productivity, from reducing typing errors and common defects to suggesting entire source code segments. Even
traditional code completion assistants are rich in functionality. They typically display relevant documentation in pop-
up windows, provide a preview of accessible methods and object attributes, provide variable and method name
completion, and enable the generation of template-based source code sections (e.g., try-catch blocks, for-each
loops, etc.). However, traditional assistants cannot generate “smart” suggestions. When generating source code
suggestions, they usually rely on the information about the type of the current variable and the variables that the
user has already defined in the program . Although they consider the already-written program, they cannot

understand the developer’s intentions and suggest all syntactically appropriate methods or variables [1I2],

https://encyclopedia.pub/entry/53887 1/5

Intelligent Source Code Completion Assistants | Encyclopedia.pub

Due to the presented limitations, intelligent source code completion assistants, which expand the scope of
functionality with the help of artificial intelligence methods, are a promising alternative. Depending on the context,
they can predict the developers’ intent and, thus, find the most suitable methods, even adapting them to the target
situation and placing them at the top of the suggestions list. They can also generate more relevant sections of
source code by considering the context of the program and developers’ intent (e.g., suppose that a developer
creates a variable with a name that implies the use of dates. In that case, the intelligent assistant will automatically
suggest and prepare a relevant section of source code that assigns a new object of the type “Date” to the variable)
8. Although intelligent assistants are on the rise 4], only some are available to the general public in a limited range;
others offer a limited set of functionalities 2. Many intelligent assistants promise to speed up development and
reduce the number of typos and defects in the source code with more relevant suggestions. Likewise, their
providers claim that they cannot only complete the current sentence but also generate entire sections of relevant
source code automatically. This raises the question of whether helpers are already at the stage where they benefit

developers by reducing the number of defects and shortening the time of writing code.

| 2. Intelligent Source Code Completion Assistants
2.1. Intelligent vs. Traditional Source Code Completion Assistants

Traditional source code completion assistants usually list all the attributes or methods that are available at a certain
point of the source code, usually after “.” is pressed. The developer can then select an appropriate method from an
alphabetically ordered list. The process is often slower than writing the method’s name manually 2E. As a result,
the authors identified a need for more intelligent assistants that would not arrange suggestions on an alphabetical
basis but rather in a relevance-based order. Artificial intelligence methods have been employed to supplement the
source code, proving to be very promising in source code modelling . The main functionalities of traditional

assistants that were reported in primary studies are summarised in Table 1.

Table 1. The main functionalities of traditional source code completion assistants.

Functionalities Sources
Completing the current word (BI9I[L0][11]
Predicting the most likely next unit of source code (showing a list of suggestions) ()[8)[10/112][1]{14][15]
Display of all possible candidates and documentation (16][17][18]
Source code completion based on templates (for/while loop, iterator) (BIL7]

Unlike traditional source code completion assistants, intelligent assistants consider the context from both the
current program and various other projects to recognise common patterns. By discerning these patterns, they can
gauge the developer’s intent. This determination often hinges on variable names or method sequences, leading to

contextually relevant suggestions. Instead of offering all possible suggestions like traditional assistants, intelligent

https://encyclopedia.pub/entry/53887 2/5

Intelligent Source Code Completion Assistants | Encyclopedia.pub

Referenecesse aligned with recognised patterns, streamlining the developer’s task. While the current state-of-
the-art does not alleviate developers entirely, it can automate the writing of frequently used and proven code
SRS s Yo inahth ee G0N ptie oGt S8 ore Oonpis SN ANd GenSic SRRrIREL I veness
of tﬁi@“&%&rc%% Pisl\égrqtlerlbn&tuo%agaeétaJégysgtg]tﬁétatrhéi\{r:\%(glzll'g%r(1)t6e?sos(|)s§tant learns from. Without the plethora of
GheBvsmtkevskigcss. ph eepSitoHeito fGitd R idthasedMadE renaplefonAdlauttamis pdeBsibteaTabléchrotijnes
the EfficientMesthhGuddigeonaptitionts afenb20a0] tueXinad0Qbil3eS]1.

3. Yang, B.; tharlgé |>|..;I_klé nsqair?(gghcébr\?a%\é%%%“gﬁel |ﬁent code com Iet,on. Ruan_ Jian Xue Bao/J.

Igert source code completion assistants.
Softw. 2020, 31, 1435.
Functionalities Sources 022, 39,
Completing the current word (names of methods, variables, attributes, ...) [Bl8IA7]
2][3][4][8][13][15][19][20]
Generating context-sensitive program continuation suggestions [21][22]123]
Displaying information about the methods and attributes of the current object (explore [2][6][L0]
API) ystem.
Generating new variable or method name suggestions i
. N : : 2ling.

Generating natural language based on source code continuation suggestions (considers 17

method and variable names and comments)

8. Terada, K.; Watanobe, Y. Code Completion for Programming Education based on Recurrent

Thé\SHHahNERMAIK onRIRGERUBSAHENS BEik Ak o kR R RGN B WEHKSEOROMEr QRRUIRERING e
baseHEHARE G igiithABRHEAHONS UWVEHA InEIITQSHI B3I staR e iy 3o 10 BlRVesIbRh &Q 1R RRnidKRg bbdut the

ARG eethpdhyanabisarang SR SIOR/ERRF, HemARINoPHISHYINg. SBIOPRIS EHirRGInAlpfetter
WhgR 50 BRRIS S FHER AR RF BatniR (5 Bh it Al SSEIcEARsS IRfhscRnones Resstn ips,

using tools that allow the generation of program continuation suggestions is essential. The tools can save a lot of
100 EHNIBERE T Mool prfartt h; ANFZEI8K e SulMRLRARY HO IR RN B RS D oM AN, v
bas’é| l{)rrfl51 Ia?tri}gcigl{flrﬁgiﬁgelnl\élg G i .ere roerfal1 rman i'g‘rpaﬁ rgrallecshlens'tﬁgt,Pvrv %%et‘lju@ygae%fetrg?eIgu%géét%ws grn %rogram
conlGERaT RG] GO RESRETORo IR E N B3R N RS BP BSnrR BN baP as At RERHRIC 2hterns
foulePTE %arzlgu_sz]%e'g‘9%@(%259{’0%3%%%9@%%25'[§]. Thus, in addition to the already defined source code elements,
1they icah; Hrrmsg, tRose nonwelpresent Tathecabenatext ey Hiddedag setict Codie tosmp) | &i8nAnigssential
feaioz epitzintigent d SRiatakitsgshied disy aiedier 20 ZugaexiorB106! 18392®em by relevance. The best suggestion

should alwal)_/s a)pear at the top of the list so_that developers only need to check the first few entries instead of

12. Hu, X.; LI, G.; Liu, F,; Jin, Z. Program Generation and Code Completion Techniques Based on

searching through the entire list. Through machine_learning methaods, intelligent assistants can generate longer and
Deep Learning: Literature Review. Ruan Jian Xue Bao/J. Softw. 2019, 30, 1223.

more complex suggestions, ranging from simple words to complete sections of source code.

13. Kalyon, M.S.; Akgul, Y.S. A Two Phase Smart Code Editor. In Proceedings of the 2021 3rd
ThentelmaitignalaGiaTdrésscteniimawpdRsts patsritabér adRoran0 piimirsitin ARd tRebetiexapplicdtichsing
pargﬂ@@ﬁ),ma, tvutn@wl_[rpn]_&@ung.zogmlppe@_do not write all parts of the program source code

themselves but find a library that meets their relguirements and then use it. Since sp many, libraries exist, deciding
14. Karampatsis, R.M.; Babii, H.; Robbes, R.; Sutton, C.; Janes, A. Big code = blq vocabulary. In
which one to_use Is often quite challenging. Here, again, intelligent assistants can help develppers make their work
Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering, Seoul,
easier by suggeésting which library to use at a given location &I by considering the already written program 2. The

https://encyclopedia.pub/entry/53887 3/5

Intelligent Source Code Completion Assistants | Encyclopedia.pub

inteffigputbtissaftdons eds @ ghbun en 1€k dlyle2 02 théA rivh dNeavArdrkyiNe) blsvs 20R@lopers to instantly assess

1BIUGIVBR B BIRLS, DOBARLEE 18 B! L) Deg SRt 15 AR S dlsee £ ance o
the R Y e er S AR AP A M R PP RIS CUliE S SR JA B iRl 7 BHECELH LS e
SO A THERE SR RIS Rt 18 OnEr I SO B LS PRGIES R g e VA aT e use
“@Canada, 25-31 May 2019; pp. 1050-1060.

L&ssrangs Kas¥d ohl arifaonl GiteMaag;eenidnaa g aditidn@rams e qoendy Sugyealidy chitexikiirg foari@olde and
mefGodsalefiiet Witth & erogaiic [Riraciol ey leéfatinie sdvarisettwakirgl . sBgoestss 2022 Sibaip 4ldy can predict
7RI RigE/BRISE S R0 SERG & L ARTtEY AP ARSI E S A ARGty e ave ot
Prebaglane RRSHEPSF Code SIMRRRTEHPIEBARISHSTS iS0ARTocLRXRITS 125 fiAg) methods, and ever
comments within the program . Similar to traditional assistants, intelligent ones allow developers to explore APIs
18, 45986n& & 1$2BBaMNevarhle Ind@YaS SHP LA RS URLRSHINRAEeE-aNRRER Hi€ANNIABKEA by relevance
ratfRfARES NG ENEL 8/R Ard INiRANANGRY Sioniscants, abinapvatiemimAilicialdrisdligeneridt dha
gerdPd2, aobeResk GRINA, ddrel& Marehnd0diBicnB.- é Bedd8per. In practice, the assistant will gather enough
19PAPESES A REFOBMENt ANY BSHRTARS LM RIARRAMAS R Bgdsuts nair kg A2t do this in
all gpses:-JdoqweygE4bwill make the developer’s work significantly easier by generating suggestions based on

natural language, even if only occasionally.
20. Ciniselli, M.; Cooper, N.; Pascarella, L.; Poshyvanyk, D.; Di Penta, M.; Bavota, G. An Empirical

2. 2 eadinefIHteNREMSduree Tdae Conpletivi Wssistam Comparson) /115,

21. Wang, Y.; Li, H. Code Completion by Modeling Flattened Abstract Syntax Trees as Graphs. arXiv.
GitHub Copilot has 8arnered significant atténtion recently. Developed by GitHub in collaboration with OpenAl, this
2021, arXiv:2103.09499.) -
assistant offers program continuation suggestions based on the context from comments and source code. It utilises

2B e Ark@sialing DAy Saldaaihan Nviolkastesse Bs ’bosiencaymplatipeninsing déa Lrahddte s tirfuan daBytadRaiito
sourdRCEstingeainfig #0700 privpddRdies 3d SitHub 5.

23. Hu, X.; Men, R.; Li, G.; Jin, Z. Deep-AutoCoder: Learning to Complete Code Precisely with
Tabnine (previously Codota) employs OpenAl's GPT-2 transformer. Its primary function is to predict and suggest
Induced Codée Tokens. In Proceedings of the 2019 IEEE 43rd Annual Computer Software and

the subsequent unit of source cade, typically the next word or line 241,
Applications Conference (COMPSAC), Milwaukee, WI, USA, 15-19 July 2019; Volume 1, pp.

Kite],'SS?n?}aGrqb Tabnine, is built on OpenAl’'s GPT-2 model. It suggests the next word or line of source code using

2acalagamiest FabripenBoure2enplavaitabiilitoiirie: dotiphhwvaletitabKite disntay (adeassedtdio2dor nearby
obj@tiobensEORIB). users must install an additional application alongside the development environment plugin 23],

thelﬁ/iﬁ%c)é,itredcl):t(re%elr'e M%Po@%sﬁ%%ﬁé‘énasg(,jig 895?9'?1‘%0 f_ocr: %Bla‘?tgtlh: |ch) ip\d |52uzal'%\(9(ijl|%b(l:%é)er.mlnrgfned on a
GPI?EEO ?ria{é"s"%é"é"’m‘é@,t?f?‘e)é?/me(@ ?Poerrslsr%dm(()apogsd' p%%}l%b |rtlgl9b2 %g'positories. IntelliCode suggests the next program
2608y yathevsiig Acc et K. rapasi®rySmetiaiasadn. dfftohiCdele@anatose . /@eiecBereratimse, an
enttaeWEnarmfmfms'ﬁearme@Qm andie: 20051089 25ing the GPT-C model, a GPT-2 variant. It is still under

development and exclusive to Mjcrosoft developers 28],
27. Franks, C.; Tu, Z.; Devanbu, P.; Hellendoorn, V. CACHECA: A Cache Language Model Based

Thrge? %%esruglgeql%é@nq ggggtéﬂtg rlgce:ﬁtel‘f%gl] QE’ %et hp%ir%%%'és'%&elzs/ﬁr%m e7@AIE§§Imt%HgﬁIOVO§SI designed for
el HER QD o LW AN ARSI oGP RGN AN &AM BUED: MAUNS 2B dQRT e,

leveraging the GPT-2 model trained on select high-quality open-source projects (8. Lastly, the open-source Galois

https://encyclopedia.pub/entry/53887 4/5

Intelligent Source Code Completion Assistants | Encyclopedia.pub

28 sSalaiswiiitb ¢ rmpliete miid2d dpeaidebtenod Indt it Tegthedn cogyéddiarasifi® aosdntelticodélll lines of
cod@B&essed on 24 October 2022).
Zgécgﬁt%;,] e}i'el?faergt_src!a_gen%%] ?r%glljgjﬂ&ctj%lgdaengo%?%ﬁc!m R{L\I(s: ttle%gsbr% ojijgnkfﬁ\lvfr;rlgﬁgloerrggg qg/: the advent of more
Sopmttig:a{t/gé) eATarkg e s(bl%g{rtl)i%gﬁtrlg/!ae%%%g %hrgog Pe'll'%,(%%?/g osp%g %9 %1)81%09—9'!’ %g\%az)émerged as game-
AhaOgEpATh&R Mddetc haveadiGtefimaritya edia 2623 hareépabafids0d imtélligent assistants in understanding and
O 0 S0 A I B A R e SR P PSR BE P RIS sER R r 2GA5). Conle
initially leveraging OpenAl's Codex model based on GPT-3, has now been updated to GPT-4 with its new version,
R2opifoR, W ratiQufes PGSR Ahlased e hALMatRREPRIIRY ListatHEe ANalalS dfelopers
to d¥ARREHBERCEIAE e HebE: IntaEalipaalibRiHEIGNGe dt Ve e TRgtidbe IRplICAIBMAaNELtable
tooMalEIgMYEr kshrR DG X). QAR REi acRedm e iR ARy RIMAAG T8 Riages and integrates
QU MiITR YarRUP DBSaH Gorel SRS HRMAIORMEER AesngART Edsling fede Byaaasiinng ans (rsksing o7
M RASOBIFEALHIRITBIS BUISRYBY oy & ING PAEINNTR SHPRERSIRYY BHtReE dREoins
but LEIGRYEHE JIRUD OB BT CsHERSh O Sh RETGAII 4eRI98GH EbRRYGIIRS Sy ERENTS BipRTEEAr 95 these
tooﬁ&p@g@éﬁ@’g@q, r@;g%’/ Q@%W—@ﬂ/liﬁﬂ)%@ﬁ‘f solutions are being introduced in short periods, continually

enhancing the programming landscape.
34. Barke, S.; James, M.B.; Polikarpova, N. Grounded Copilot: How Programmers Interact with Code-

2.3°988WE8%R e Rmain'chalféhg ey it nteNig et S dutee Eode Completion

Retrieved from https://encyclopedia.pub/entry/history/show/121745
While intelligent source code completion tools have significantly enhanced software development, several open

issues and challenges remain to be addressed. This section explores these challenges and their implications for

the effectiveness of these tools.

In the field of intelligent source code completion, several challenges persist that impact the effectiveness of these
advanced tools. A key area is the alignment of automated testing methodologies with the suggestions made by
intelligent code completion tools. The accuracy and relevance of these suggestions are paramount, as they can

significantly influence the efficiency and effectiveness of automated testing processes 221,

Furthermore, the formal verification and validation of code generated by Al assistants present unique challenges.
Ensuring the reliability and correctness of this code is critical, particularly in high-stakes applications where the

consequences of errors are significant [23,

Additionally, a major limitation of current Al methodologies is their ability to fully understand and predict developer
intent. This limitation can compromise the quality and applicability of the code completion suggestions,
underscoring the need for ongoing research to enhance the interpretative capabilities of Al in software

development environments 34!,

These challenges highlight the need for continued research and development in the field of intelligent source code
completion. Addressing these issues will not only improve the current tools but also pave the way for more

advanced and reliable Al-driven development environments.

https://encyclopedia.pub/entry/53887 5/5

