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Clozapine is listed as one of the most effective antipsychotics and has been approved for treating treatment-resistant

schizophrenia (TRS); however, several type A and B adverse reactions, including weight gain, metabolic complications,

cardiotoxicity, convulsions, and discontinuation syndromes, exist. The critical mechanisms of clinical efficacy for

schizophrenia, TRS, and adverse reactions of clozapine have not been elucidated. The GABA isomer L-β-aminoisobutyric

acid (L-BAIBA), a protective myokine in the peripheral organs, was identified as a candidate novel transmission modulator in

the central nervous system (CNS). L-BAIBA activates adenosine monophosphate-activated protein kinase (AMPK) signalling

in both the peripheral organs and CNS. Activated AMPK signalling in peripheral organs is an established major target for

treating insulin-resistant diabetes, whereas activated AMPK signalling in the hypothalamus contributes to the pathophysiology

of weight gain and metabolic disturbances. Clozapine increases L-BAIBA synthesis in the hypothalamus. In addition, the

various functions of L-BAIBA in the CNS have been elucidated, including as an activator of GABA-B and group-III

metabotropic glutamate (III-mGlu) receptors. Considering the expressions of GABA-B and III-mGlu receptors (localised in the

presynaptic regions), the activation of GABA-B and III-mGlu receptors can explain the distinct therapeutic advantages of

clozapine in schizophrenia or TRS associated with N-methyl-D-aspartate (NMDA) receptor disturbance compared with other

atypical antipsychotics via the inhibition of the persistent tonic hyperactivation of thalamocortical glutamatergic transmission in

the prefrontal cortex. L-BAIBA has also been identified as a gliotransmitter, and a detailed exploration of the function of L-

BAIBA in tripartite synaptic transmission can further elucidate the pathophysiology of effectiveness for treating TRS and/or

specific adverse reactions of clozapine.

clozapine L-β-aminoisobutyric acid  treatment-resistant schizophrenia  metabolic complication

thalamocortical pathway

1. Introduction

Traditionally, more than 30% of patients with schizophrenia spectrum are considered to suffer from treatment-resistant

schizophrenia (TRS) . Clozapine is evaluated as the most effective antipsychotic agent for TRS since 30–60% of

patients with TRS respond to clozapine medication . Therefore, clozapine is currently the only approved antipsychotic

for TRS treatment . In fact, several guidelines recommend initiating treatment with clozapine for patients with TRS .

Furthermore, systematic reviews and meta-analyses have demonstrated that clozapine is associated with lower

hospitalisation rates, lower overall discontinuation rates, and better overall symptom outcomes compared with other atypical

antipsychotics .

All antipsychotics approved for the treatment of schizophrenia are antagonists of the dopamine D2 receptor at therapeutically

relevant concentrations . The introduction of clozapine in the 1970s marked a significant turning point in the

pharmacotherapy of schizophrenia. As an alternative, clozapine minimised the risk of extrapyramidal symptoms, such as

antipsychotic-induced parkinsonism and tardive dyskinesia, while demonstrating excellent efficacy for both positive and

negative symptoms of schizophrenia . Based on these clinical advantages of clozapine, receptor-binding profile

screenings have contributed to the development of several second-generation antipsychotics (atypical antipsychotics) that

share pharmacological characteristics distinct from the preceding first-generation antipsychotics (typical antipsychotics) .

It is well known that olanzapine has a similar receptor-binding profile to clozapine, except for the 5-HT7 receptor ; however,

the specific effectiveness of clozapine for treating TRS suggests the pathophysiology of clozapine may involve molecules

other than monoamine receptors.

Most atypical antipsychotics had been developed by exploring molecules that have similar receptor-binding profiles to

clozapine that are distinct from the preceding typical antipsychotics, such as having a relatively lower binding affinity to the

dopamine D2 receptor and higher affinity to serotonin 5-HT2A receptors . Therefore, the pathophysiological hypothesis

proposed to distinguish between typical and atypical antipsychotics, having a relatively low affinity to the D2 receptor and

relatively high affinity to the 5-HT2A receptor, cannot account for the distinct therapeutic advantages of clozapine against

other atypical antipsychotics.

Clozapine (CLZ), lurasidone (LUR), aripiprazole (APZ), brexpiprazole (Brex), olanzapine (OLZ), quetiapine (QTP), risperidone

(RIS), zotepine (ZTP), and haloperidol (HPD) against serotonin (5-HT) type 1A (5-HT1A), type 2A (5-HT2A), type 2C (5-
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HT2C), and type 7 (5-HT7) receptors, histamine H1 (H1) receptor, and dopamine receptors type 1 (D1) and 2 (D2). Data are

equilibrium constant (Ki) values (nM).

2. Clozapine-Induced Metabolic Complications

Weight gain is the most prevalent adverse reaction of atypical antipsychotic medications. Weight gain induced by atypical

antipsychotics usually occurs during the early stages of antipsychotic treatment (within the first year), with an increase of 7%

over baseline weight observed in approximately two-thirds of antipsychotic-treated patients . Diabetes treatment in

patients treated with clozapine is manageable by following current diabetes treatment guidelines . Thus, a history of

diabetes in TRS patients does not constitute a contraindication to clozapine medication . Among pharmacological

interventions, metformin has an excellent safety profile and is the most effective for weight gain stabilisation .

Topiramate has also been demonstrated to be as effective as metformin in suppressive effects on clozapine-induced weight

gain . Glucagon-like peptide-1 (GLP1) receptor agonists have been recently shown to effectively mitigate clozapine-

induced metabolic disturbances . However, weight gain induced by antipsychotics other than clozapine, including

olanzapine and quetiapine, reaches a plateau within the therapeutic dose range, whereas the unique features of weight gain

with clozapine indicate a linear dose-dependent manner ranging from therapeutic to supratherapeutic doses . This specific

linear dose-dependent weight gain induced by clozapine indicates that different mechanisms might underlie the weight gain

induced by other antipsychotics.

Atypical antipsychotic-induced metabolic complications have been considered to be related to the inhibition of the histamine

H1 and serotonin 5-HT2A receptors, which leads to the disturbance of energy regulation systems in the hypothalamus .

The inhibition of the H1 and 5-HT2A receptors suppresses the synthesis of inositol trisphosphate (IP3), which activates the

calcium-induced calcium-releasing system (CICR) via the enhancement of the IP3 receptor (Figure 1) . The elevation in

intracellular calcium ion levels activates adenosine triphosphate (ATP) synthase, leading to an increase in ATP and/or a

decrease in adenosine monophosphate (AMP) levels (Figure 1) . Therefore, CICR suppression induced by H1 and 5-

HT2A receptor inhibition secondarily increases intracellular AMP levels, leading to the activation of adenosine monophosphate

(AMP)-activated protein kinase (AMPK) (Figure 1) . This hypothesis has been supported by the clinical findings on

high-affinity H1 and 5-HT2A receptor antagonistic antipsychotics, including zotepine, quetiapine, olanzapine, and clozapine

listed as being high-risk for metabolic complications . However, the activation of AMPK in the peripheral organs is one of

the major therapeutic targets for insulin-resistant diabetes , whereas the activation of AMPK signalling in the

hypothalamus increases feeding and reduces energy expenditure in the body .

Figure 1. Schematic presentation of hypothalamic signalling associated with traditional hypothesis regarding the mechanisms

of antipsychotic-induced metabolic complications and weight gain. Red and blue arrows indicate activation and inhibition,

respectively. Abbreviations: H1 receptor—histamine H1 receptor, 5-HT2A receptor—serotonin 5-HT2A receptor, IP3—of

inositol trisphosphate, CICR—Ca -induced Ca -releasing system, ATP—adenosine triphosphate, AMP—adenosine

monophosphate, and AMPK—AMP-activated protein kinase.

Chronic administration of therapeutically relevant doses of clozapine, quetiapine, brexpiprazole, and lurasidone decreased

IP3 synthesis, and increased AMP levels in the rat hypothalamus . However, contrary to expectations, AMPK

signallings were activated and unaffected by high-risk (clozapine and quetiapine) and low-risk (brexpiprazole and lurasidone)

antipsychotics for weight gain, respectively . Both clozapine and quetiapine are high-affinity antagonists of the

histamine H1 receptor and the 5-HT2A receptor, whereas brexpiprazole and lurasidone are high-affinity 5-HT2A receptors but

have low binding affinity to the H1 receptor . Therefore, enhanced intra-hypothalamic AMPK signalling plays

fundamental roles in antipsychotic-induced metabolic complications and weight gain, but decreasing IP3 with increasing AMP

levels via inhibition of H1 and/or 5-HT2A receptors alone cannot explain the pathophysiology of antipsychotic-induced weight

gain. Similar to clozapine, an H1 and 5-HT2A high-affinity atypical antipsychotic agent, olanzapine, which was established to

also be a high-risk antipsychotic for weight gain, decreased IP3 synthesis ; however, olanzapine has been reported to

enhance  and suppress  hypothalamic AMPK signalling with contradictory results.
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3. Clozapine and TRS

3.1. Efficacy of Clozapine in TRS

TRS is internationally defined by the Treatment Response and Resistance in Psychosis (TRRIP) Working Group and includes

the following aspects: the presence of persistent symptoms—including positive and negative symptoms, and cognitive

impairment—over at least 12 weeks of at least moderate severity caused by moderate levels of functional impairments .

Symptom classifications and thresholds should be based on standardised and validated clinical rating scales. Insufficient

response to medication with at least two different antipsychotic medications, with a minimum treatment duration of twelve

weeks (six weeks for each antipsychotic agent). This corresponds to a minimum dose equivalent to 600 mg per day of

chlorpromazine. Confirmation of adequate treatment adherence is defined as the patient having taken at least 80% of the

prescribed dose. To achieve this, at least two methods should be employed, including counting tablets, patient and caregiver

reports, and review of medical records and documentation. Additionally, plasma drug concentrations should be monitored at

least once for each antipsychotic agent .

Incontrovertible evidence supports the superior efficacy of clozapine compared with other atypical antipsychotics in improving

positive symptoms and global psychopathology in TRS . Considering the lack of evidence to support using

polypharmacy of antipsychotics other than clozapine that is as effective as clozapine, the efficacy of clozapine in TRS is

evaluated as being more robust . Furthermore, patients treated with clozapine have also shown improvements in treatment

adherence, resulting in decreased rehospitalisation rates .

3.2. Candidate Pathophysiology of TRS

Some research groups have emphasised the importance of distinguishing between primary and secondary TRS: primary TRS

already presents with antipsychotic-resistant clinical features at the onset of the schizophrenia spectrum, whereas secondary

TRS develops at later stages of the schizophrenia spectrum after an initial adequate response to antipsychotics .

Dopaminergic supersensitivity induced by consecutive exposure to antipsychotics has been speculated as a candidate

mechanism of secondary TRS . Persistent exposure to antipsychotics upregulates postsynaptic D2 receptors, leading to

further psychotic exacerbation . The estimated overall response rate to antipsychotic medications ranges from 40% to 60%

. The response rate to antipsychotic medication in antipsychotic-naïve patients is estimated to be approximately 75%;

however, the response rate in a second trial using antipsychotic medications other than clozapine was considerably lower,

ranging from 20% to 45% . Response rates to clozapine have been reported to be maximally up to 80% when treatment

is initiated within the first 2–3 years after resistance is established . With subsequent initiation of clozapine

medication, the response rate might be as low as 30% . The efficacy of clozapine against TRS is significant compared with

other antipsychotics but decreases depending on the duration of antipsychotic exposure, which is similar to other

antipsychotics. These clinical findings regarding duration-dependent resistance at least partially support the dopaminergic

supersensitivity hypothesis .

The specific features of clozapine, such as low affinity and rapid dissociation from D2 receptors, are considered to be

candidate mechanisms via which clozapine-induced D2 receptor supersensitivity is less than that of other antipsychotics 

. However, several line studies have demonstrated that the dissociation rate of clozapine from D2 receptors is not

significantly faster compared with the rates of other antipsychotics, such as quetiapine, amisulpride, remoxipride, and sulpiride

. These pharmacodynamic findings suggest that the efficacy of clozapine in secondary TRS cannot be solely

explained by either its low affinity or rapid dissociation from D2 receptors, even if the pathophysiology of TRS involves D2

receptor supersensitivity.

3.3. Candidate Targets of Clozapine Other Than Monoamine Receptors

Although schizophrenia is commonly speculated to be a pathophysiologically contiguous spectrum between treatment-

responsive schizophrenia and TRS, several findings suggest that TRS might be a subtype with extreme characteristics from

the perspective of neurodevelopmental disorders . In other words, there are possibly two subtypes of pathophysiology of

TRS, one being secondary treatment resistance due to long-term exposure to antipsychotic drugs, and the other already

developing as TRS during the onset period. Approximately 70–80% of patients with TRS have been reported to present

antipsychotic-resistant clinical features from the first episode . Furthermore, predictors of antipsychotic resistance in

schizophrenia are similar to the clinical features of ‘neurodevelopmental’ schizophrenia, such as being male, being of a

younger age at onset, poor premorbid adjustment, and a longer duration of untreated illness . So far, various studies

have revealed impairments in cognitive components, such as sensorimotor function, attention, working memory, visuospatial

processing, verbal intelligence, and memory in TRS patients compared with treatment-responsive schizophrenia .

These cognitive impairments are more suggestive of impaired function of glutamate transmission (via thalamocortical

pathways) than monoamine transmission (via the mesolimbic and mesocortical systems). These cognitive impairment
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features of TRS suggest it may be caused by dysfunction of glutamatergic transmission (via thalamocortical pathways) rather

than monoaminergic transmission (via mesolimbic and mesocortical pathways) .

Quantitative reviews of mRNA and protein expression of N-methyl-D-aspartate glutamate receptor (NMDA-R) in post-mortem

studies have demonstrated that both mRNA and protein expression of the NR1 subunit of NMDA-R in the prefrontal cortex

decreased in patients with schizophrenia compared with healthy volunteers . mGluR5 (I-mGluR) signalling in the

dorsolateral prefrontal cortex decreased, indicating that NMDA-R hypofunctions . In the post-mortem frontal cortex of

untreated patients with schizophrenia, downregulation of group II metabotropic glutamate receptors (II-mGluR), such as

mGlu2/3, was reported . Conversely, III-mGlu receptor expression in schizophrenia remains unreported, whereas the

activation of the III-mGlu receptor suppressed the hyperactivated transmission induced by NMDA-R impairment in wild-type

and II-mGluR deficit models .

In other line studies, both post-mortem and experimental animal model studies also demonstrated that impairment of the

GABA-B receptor plays an important role in the pathophysiology of schizophrenia. Decreased GABA-B receptor expression in

the hippocampus, prefrontal cortex, inferior temporal cortex, and entorhinal cortex in schizophrenia has been reported .

Decreased GABA-B receptor expression in the prefrontal cortex and hippocampus of the DBA/2J schizophrenia model

compared with C57BL/6J mice was also revealed . Clinically, clozapine is evaluated as the most effective antipsychotic to

improve sensorimotor gating dysfunction in patients with schizophrenia . Maladaptive perseveration with strategies that

cannot lead to the desired outcome resulting from cognitive and behavioural inflexibility via possible sensorimotor gating

dysfunction in the thalamocortical pathway is considered a characteristic feature of schizophrenia . Pre-pulse

inhibition (PPI) has been established as an endo-phenotype of sensorimotor gating function. Clozapine improved PPI deficits

in an experimental animal model, ZFP804A mutant mice, and an NMDA/glutamate receptor (ketamine)-induced model .

Baclofen has also been indicated to counter PPI disruption of the acoustic startle reflex produced by the blockading of the

NMDA-R . Notably, the effects of baclofen on PPI deficit were comparable to those of clozapine but more prominent than

those of the typical antipsychotic, haloperidol . These behavioural studies suggest that the impacts of a GABA-B deficit

contribute to sensorimotor impairment in schizophrenia.

A recent study using molecular docking calculations for the X-ray crystal structure of the GABA-B receptor suggested that

clozapine, like baclofen, might bind to the GABA-B receptor . Both clinical and preclinical studies have suggested that

clozapine enhances GABA-B receptor function, and the direct binding of clozapine to the GABA-B receptor has not been

demonstrated but, rather, has been denied . Considering these previous findings, the enhancement of GABA-B

receptor function with clozapine may be mediated by an indirect mechanism of clozapine rather than a direct agonist action.

Therefore, the hypothesis regarding the stimulatory effects of clozapine on GABA-B receptor function is intriguing for

understanding the underlying pathophysiology of the clinical efficacy of clozapine in TRS.
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