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The formation of severe scars still represents the result of the closure process of extended and deep skin wounds.

To address this issue, different bioengineered skin substitutes have been developed but a general consensus

regarding their effectiveness has not been achieved yet. It will be shown that bioengineered skin substitutes,

although representing a valid alternative to autografting, induce skin cells in repairing the wound rather than

guiding a regeneration process. Repaired skin differs from regenerated skin, showing high contracture, loss of

sensitivity, impaired pigmentation and absence of cutaneous adnexa (i.e., hair follicles and sweat glands). This

leads to significant mobility and aesthetic concerns, making the development of more effective bioengineered skin

models a current need. The objective of this review is to determine the limitations of either commercially available

or investigational bioengineered skin substitutes and how advanced skin tissue engineering strategies can be

improved in order to completely restore skin functions after severe wounds.
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bottom-up tissue engineering  vascularization  bioreactors  dermal substitutes  scar tissue.

1. Pre–Vascularization of Dermis Substitutes

The treatment and the evolution of deep wounds due to thermal burns is schematised in Figure 1A-D. After the

debridement of the wound, the bed is filled with a Dermal Regeneration Template (DRT) supporting an artificial

layer of silicone-based epidermis. After a period of four weeks, the epidermal layer is detached and an autologous

STSG is applied. In a clinical study that used Integra  as the DRT, 20 patients presenting deep wounds were

treated using the procedure described in Figure 1A-D. The evolution of the wound was analysed by means of

histology, immunocytochemistry and the Vancouver Scar Scale . It was observed that the vascularization of the

DRT played a crucial role in the take of the STSG. For instance, if the STSG was applied after two or three weeks,

the take rate was very low. On the contrary, if the STSG was applied after the fourth week, the take increased up to

95%. Histological and immunostaining analyses demonstrated that at two weeks the vascularization of DRT was

poor but increased four weeks after implantation. These data suggest that vascularisation of the DRT and the take

of the STSG are strictly related .
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Other relevant findings concern the evolution of the dermis compartment over the time. Weekly histological

investigation revealed that influx of exudates and host fibroblasts occurred during weeks one–two. At three weeks,

the influx of endothelial cells and the synthesis of immature extracellular matrix components by fibroblasts began.

During week four, the formation of a capillary network (Figure 1E) was observed. After the application of the STSG,

the wound continued its evolution: at week six a well-organized capillary network was observed, but the dermis–

epidermis interface presented no rete ridge profile; at month three, a layer of endogenous collagen network was

observed underneath the STSG; after two months, the wound was completely repaired but the neo-tissue was

different from the healthy skin. Finally, the complete substitution of the initial DRT with the neodermis occurred at

two years post implantation. Even though the patients recovered partial mobility of the damaged parts, it was

observed that the repaired zone showed an impaired pigmentation, the mechanical properties between healthy and

repaired sites were different, and the organization of the collagen network of the neodermis was different than that

of the collagen in the healthy dermis. Finally, neither elastin nor adnexa were present, and differentiation of

fibroblasts in myofibroblasts was observed. On the basis of such findings two main issues affecting the DRT

emerge: (i) the lack of vascularization ; and (ii) the limited capability in inducing regeneration instead of repairing

processes . The take of the STSG has huge implications related to the repairing process, patient mortality, and

morbidity and healthcare costs. Indeed, a low take percentage increases the number of re-grafts and the risk of

infection by causing either the death of the patient or an increase of hospitalization time in case of morbidity. To

increase the take of STSGs, new emerging strategies involve the use of pre-vascularized DRTs . By

seeding a DRT with adipose tissue-derived microvasculature fragments, a faster vascularization after implants was

observed . Complete reperfusion of the DRT occurred at day six. The percentage of the take was high if the

STSG was applied just after day six, indicating that reperfusion rather than simple vascularization played a crucial

role in the take. These data suggest that pre-vascularization of the DRT can contribute to shortening the timeframe

needed for the application of an STSG. On the other hand, a one-step surgery, which may decrease the number of

surgical operations, cannot be performed yet. To do this, not only vascularization, but also fast reperfusion should

be promoted.

2. Engineered Skin Composed of Fibroblast-Assembled
Extracellular Matrix

The lack of vascularization at the moment of implantation has been recognized as the main issue affecting the take

of the STSG. No studies have been performed yet on the role that the extracellular matrix comprising the DRT may

play on both vascularization and longtime dermal remodeling  [ ]. The dermis compartment of the totality of the

skin substitutes (either cellularized or acellular) are composed by exogenous extracellular materials, i.e., not

assembled by the fibroblasts of the patient. This should represent the limitation of the currently available tissue

engineering skins. Indeed, exogenous matrices, even though of natural origins, cannot fully replicate the

complexity of the living dermis. This may ultimately compromise the repository and regulatory role that the native

cell-assembled extracellular matrix plays . Such a mismatch between an exogenous material and the living

dermis may be responsible for the impaired repair process at both cellular and extracellular levels. Firstly, because

the repository and regulatory role of the native ECM is depressed, the growth factors secreted by fibroblasts are
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not correctly presented to other cell types (e.g., keratinocytes and endothelial cells) neither in space nor time,

generating a possible “mistake” in cell–cell signalling. This could explain both the delay in the vascularization time

and the delayed formation of the rete ridge profile at dermal epidermal interfaces . As confirmation of this, in

vitro tissue engineered skin made by exogenous natural hydrogels (i.e., collagen, fibrin, etc.) presents a flat

dermal–epidermal interface. On the contrary, if epithelial cells are grown on a fibroblast-assembled ECM, it is

possible to observe a rete ridge profile with spontaneous formation of epithelial invagination and follicular-like

structures (Figure 1C) , which are typical of the physiologic dermal–epidermal cross-talk mediated by the

extracellular matrix . The lack of endogenous ECM-mediated signaling may also explain the absence of both

cutaneous adnexa and nerve endings in repaired deep wounds . Secondly, when fibroblasts colonize the

inner porosity of the DRT, they produce an immature extracellular matrix with a degree of assembly much lower

than the degree of assembly of the surrounding healthy dermis. Such an immature protein network is not able to

withstand the traction forces of the fibroblasts , generating a different architecture of the collagen fibers in the

wound compared to the healthy dermis . Macroscopically, these phenomena generate a portion of the cutis

possessing different mechanical properties, different pigmentation, absence of sensing properties and high

contracture, provoking both severe functional and aesthetic concerns.

To overcome such limitations, a tissue engineering strategy to produce a human dermis substitute composed of a

fibroblast-assembled extracellular matrix has been developed . The innovative idea of such strategy is to let

human fibroblasts producing their own ECM in vitro. This process provides the possibility of modulating the

properties of the cell-synthesized ECM, in order to obtain a final dermis having both composition and assembly

degree of the collagen network relatively similar to those present in vivo. Moreover, no exogenous materials are

present. This bottom-up tissue engineering strategy starts with the fabrication of dermal building blocks obtained

by seeding human fibroblasts in porous gelatin microspheres (figure 2A). It has been demonstrated that by

optimizing the culture conditions, the fibroblasts can produce their own extracellular matrix. Such building blocks,

named Dermal-µTissues, were subsequently moulded and packed in maturation chambers where both cell–cell

and ECM–ECM interactions took place, leading to the formation of a continuum, up to 2 mm thick, made of an

endogenous dermis containing fibroblasts and gelatin microspheres. By modulating the stiffness and the

degradation rate of the gelatine microspheres and by engineering the dynamic culture conditions (Figure 2), it was

possible to obtain fine control over the maturation status and assembly of both collagen and elastin networks .

During the duration of the process (approximately five weeks), gelatin microspheres were degraded by protease

digestion and the final tissue, named EndoDermis, was completely made up of fibroblasts embedded in their own

extracellular matrix (Figure 2A). Interestingly, the collagen network was characterized by a stiffness and degree of

assembly similar to that featuring the human skin. In the ECM elastin, hyaluronic acid, fibronectin and elastin were

also present (Figure 2B-F). In order to produce a pre-vascularized endogenous human dermis model, human

umbilical vein endothelial cells (HUVECs) were seeded on the EndoDermis and it was allowed to form an

interconnected capillary network  that occurred within three weeks (Figure 2D, E). At the best of our knowledge,

other than a capillary network, such an engineered DRT is the first model completely formed by a fibroblast-

assembled extracellular matrix . After subcutaneous implant in a nude mouse model, fibroblasts and their own

ECM (the neodermis) were already present and well-assembled. Thus, no additional time is required for fibroblast
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influx and neodermis formation. The only phenomenon required is the anastomosis and perfusion of the

engineered capillary network. This was shown to occur within seven days of implantation (Figure 2H). Although

further investigations are currently being conducted of a more representative wound model, such data are

encouraging. In addition to vascularization, which has been recognized as a critical issue affecting the

effectiveness of a DRT, the described tissue engineered strategy allows the fabrication of a DRT composed of a

native extracellular matrix starting from a small number of fibroblasts derived from the patient. In this way, the risks

associated with the allogenic nature of the cells and the impaired ECM assembly during wound closure, can be

drastically reduced. According to this idea, the formation of severe scars can be reduced.
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