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Developing new, more effective antibiotics against resistant Mycobacterium tuberculosis that inhibit its essential

proteins is an appealing strategy for combating the global tuberculosis (TB) epidemic. Finding a compound that can

target a particular cavity in a protein and interrupt its enzymatic activity is the crucial objective of drug design and

discovery. Such a compound is then subjected to different tests, including clinical trials, to study its effectiveness

against the pathogen in the host. In recent times, new techniques, which involve computational and analytical

methods, enhanced the chances of drug development, as opposed to traditional drug design methods, which are

laborious and time-consuming. The computational techniques in drug design have been improved with a new

generation of software used to develop and optimize active compounds that can be used in future

chemotherapeutic development to combat global tuberculosis resistance.

Mycobacterium tuberculosis  computational drug design  molecular docking  anti-tuberculosis

structure-based drug design

1. Introduction

Robert Koch identified the etiological agent of tuberculosis (TB) as  Mycobacterium tuberculosis  (Mtb) . TB

generates a lot of concerns as a contagious disease that poses a high risk to public health globally. Despite the

available anti-tubercular drugs introduced over the years, TB remains one of the leading causes of death globally

. According to the World Health Organization (WHO), it is the most common infection caused by a single

bacterium. About 10 million people were diagnosed with TB in 2017, and 558,000 of them showed resistance to the

most effective first-line medication, rifampicin. According to another WHO survey, an estimated 1.5 million deaths

occurred in 2018 . It infects about a third of the world’s population and kills approximately 1.7–1.8 million people

per year, demonstrating the failure to find new antibiotics to conquer this deadly disease . Therefore,

antimicrobial compounds that are effective against Mtb are desperately required to tackle this global epidemic,

worsened by resistance to medication, long-time treatment schedule, and co-infection, especially with Human

Immunodeficiency Virus (HIV). In more than 40 years, no new antibiotic to treat TB has been created .

Recently, phenotypic screening efforts using commercial vendor libraries evolved toward identifying compounds

that inhibit Mtb development . This intervention gives a ray of hope in the search for new therapeutics against

Mtb. The urgency to end the Mtb epidemic requires improvement in diagnostic tools and the efficacy of

therapeutics used in treating TB in diagnosed patients. This intervention reduces the treatment regimens usually

required with strict compliance to ensure effective treatment. Rapid and cheap diagnostic test kits that can be
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readily accessible to the public aids early diagnosis, while drugs with multiple targets go a long way to improve the

outcome of treatment . There is urgent attention to deliver new potential active antimicrobial agents to scale down

the resistant TB strains. Many strategies and efforts have been adopted, which involved the structure-based design

of inhibitors for a single target pathogen through computational methods .

Target drug discovery begins with identifying and studying enzymes or proteins necessary for the growth and

development of the pathogen. Researchers then screen these proteins against some chemicals or compounds in

libraries for potency and inhibitory effect leading to drug candidate identification using computer software after

learning the accurate details of the target and lead molecule. This procedure could help pharmaceutical firms,

agencies, and research labs avoid following the “false” clues. In contrast to the traditional drug discovery approach,

which is time-consuming, expensive, and laborious, a new understanding of the quantitative relationship between

structure and biological activity leads to the emergence of computer-aided drug design (CADD) applications in

search of new therapeutics against TB. Table 1 shows the advantages of the computer-aided method of designing

drugs over the traditional method.

Table 1. Comparison of the traditional method of drug development with CADD (computer-aided drug design).

The rapid advances in high-throughput screening (HTS) technologies and computational chemistry created an

atmosphere that allows vast libraries of compounds to be screened and synthesized in a short period, speeding up

the drug development process . CADD involves storage, management, analysis, and modeling of potential

therapeutic compounds. It refers to computational methods and techniques for storing, handling, analyzing, and

modeling chemical compounds. It includes computer programs for designing compounds, tools for systematically

evaluating possible lead candidates, and the development of digital libraries for researching chemical interactions

between molecules, among other topics . Advances in drug discovery involve using computational analysis to

identify and validate vulnerable targets, which leads to the emergence of new therapeutics; they are also used in

preclinical trials, drastically altering the drug development pipeline. Computational techniques can cut drug

production costs by up to 50% . On average, it takes 10–15 years and $500–800 million to bring a drug to
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The Traditional Method of Drug Development CADD

It involves more trial-and-error processes It is more logical

It involves blind screening It is specific and mostly target-based

It is a more expensive approach to drug development It minimizes the cost of drug development

It is a relatively more laborious and time-consuming
approach

It reduces the duration required in the development of
new drugs

It involves sequential steps
It entails steps that are not only sequential but are

also parallel and straightforward.

It involves separate interdisciplinary drug
development with more difficult processes

It coordinates interdisciplinary drug development with
easier processes.
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market, with lead analogue synthesis and testing accounting for a significant portion of that cost. As a result, using

computational methods during optimization drastically reduces the expenses on drug development, as there are

computational models that can screen thousands of compounds before synthesis and in vitro testing.

New therapeutics against TB emerged from HTS techniques and other related software development. There has

also been an increase in biological and chemical data available on Mtb to facilitate new target identification.

Furthermore, improvements in data storage capacity, supercomputing ability, and parallel processing encouraged

the adoption of CADD as an integral component of TB pharmaceutical research. CADD made drug discovery all-

encompassing, including different fields. Computational tools of CADD made it possible to ascribe more than 5000

macromolecular structures in the Protein Data Bank (PDB) to Mtb . This repository provides a fertile ground

for discovering new compounds as potent drug molecules to combat TB .

CADD can be structure-based drug design (SBDD) or ligand-based drug design (LBDD). These are the two most

popular approaches to drug discovery (Figure 1). Currently, no single method can meet all the necessities of drug

discovery and production. As a result, several computational methods are used widely and effectively in

combinatorial and systemic approaches . This review examines the evolution of TB tolerance, current drug

management, and the development and adoption of new compounds as anti-tubercular therapeutics.

[19][20]

[1][19]

[1]



Computational Drug Design of TB | Encyclopedia.pub

https://encyclopedia.pub/entry/17125 4/25

Figure 1. An illustration of CADD.

2. Status of Computational-Aided Drug Design and
Discovery in TB

The drug discovery process for novel anti-tubercular therapies has evolved throughout the years due to the

accumulation of biological and chemical data, the identification of numerous validated targets, and the

advancement of high-throughput screening methods and software algorithm development. Aside from that,

advances in data storage capacity, supercomputing power, and parallel processing allowed computer-aided drug

design (CADD) to become an integrated component of TB drug design and discovery research during the last

several years. As computing power continues to grow, it may soon be possible to conduct extensive exploration of

the vast chemical space, which is estimated to contain about 1060 organic molecules below 500 Da, to identify

potential therapeutic attractive moieties  for effective Tb treatment.

Furthermore, the massive protein structural data, which includes more than 180,000 macromolecular structures

available in the PDB (www.rcsb.org  accessed on 8 November 2021) and other protein repositories, gave the

computational SBDD (Figure 2) concept an impetus. The pulled structures allow identification of critical receptor

catalytic and allosteric sites, molecular nature, and crucial features for in silico SBDD research. There has been

much focus on TB with the countless ongoing drug discovery research, with several thousand published CADD

studies. Although this is the case, Ekins et al.  identified gaps in the application of computational methods in TB

research, resulting in a slow stream of candidates’ drugs entering the TB drug pipelines, despite the evident need

and immediacy for an effective treatment against this infection. Therefore, there is a need for more rigorous efforts

to develop TB drugs leveraging the benefits provided by computational techniques.
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Figure 2. Complementary integration of Structure–Based Drug Design (SBDD) and Ligand–Based drug Design

(LBDD) approaches.

Methods based on computation or in silico are currently burgeoning and knowledge-driven, systematically

evaluating existing data to explore protein function and develop novel compounds that can modulate its activity.

Depending on the availability of protein structures, computational drug discovery techniques are typically SBDD

and ligand-based drug design (LBDD). To enhance the success rate of current drug development initiatives, it has

been standard practice in the pharmaceutical industry to integrate these approaches in a complementary manner

with one another (Figure 2). When using SBDD, it is necessary to have a three-dimensional (3D) model of the

target protein to evaluate and exploit the druggable pockets for screening and creating appropriate ligands, which

can subsequently be experimentally confirmed and enhanced. Instead of relying on protein structural data, LBDD

uses the information obtained from a wide array of ligands with proven activity to develop prediction models for hit

and lead optimization .

Different SB and LB tactics, or a mix of them, might be used at different phases of TB drug design, discovery, and

development to mitigate the difficulties associated with experimental techniques. With the availability of the TB
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genome and proteome and a wealth of structural information, researchers can use big data and molecular

simulation to identify potential targets for treatment vs. allows choosing the most promising prospective candidates

from a database comprising millions of compounds for a specific TB target. From the validated candidates, a

quantitative structural activity relation (QSAR) study is obtainable to understand the mechanism of action and

ADMET properties. QSAR facilitates compound development with improved efficacy, as well as pharmacokinetic

and pharmacodynamics properties.

The information gathered from this research (both positive and negative outcomes) may be saved and used for

additional iteration and technique optimization in designing novel TB drugs in the future. Structure-based vs.

produced many anti-tuberculosis compounds with appreciable enzymatic inhibition (Table 2 and  Table 3). This

study provides an overview of the SBDD process and the current approaches for TB drug development in the

modern era. Furthermore, we provide an insight on the machine learning (ML) techniques designed to accelerate

the process, procedures, management, and application of large amounts of data in TB drug design.

Table 2. Successful SBVS approaches on anti-Mtb and activities of the best compounds *. A summary of Mtb

pathways is available in the supporting information.

System PDB Structures Function Anti-Mtb
Activity Ref.

L-alanine dehydrogenase 2VHW Biosynthesis of l-alanine
IC50/35.5

μM 

L-alanine dehydrogenase 4LMP Biosynthesis of l-alanine MIC/1.53 μM

L-alanine dehydrogenase 2VOJ Biosynthesis of l-alanine MIC/11.81 µM

7,8-diaminopelargonic acid
synthase

3TFU Biotin biosynthesis pathway MIC/25 μM

7,8-diaminopelargonic acid
synthase

3TFU Biotin biosynthesis pathway MIC/7.86 μM

Cyclopropane mycolic acid
synthase 1

1KPH Cell wall MIC50/5.1 μM

l,d-transpeptidase 2 3TUR Cell wall
MIC94/25.0

μM
MIC89/0.2 μM

GlmU protein 3ST8  Cell wall IC50/9.0 μM   

NAD⁺-dependent DNA
ligase A

1ZAU/1TAE DNA metabolism MIC /15 µM

Flavin-dependent
thymidylate synthase

2AF6  DNA metabolism
MIC90/125

μM

b
[24]
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* Structures are provided in Table 3.   Ligand-based approach and   in vitro enzymatic essays. PDB (Protein Data

Bank).

Table 3. Structure of identified molecules with the best anti-Mtb activity or enzymatic inhibition.

System PDB Structures Function Anti-Mtb
Activity Ref.

Flavin-dependent
thymidylate synthase

2AF6 DNA metabolism IC29/100 μM 

DNA gyrase 4BAE DNA topology MIC/7.8 µM

Dihydrofolate reductase
Mtb: 1DF7;

human: 1OHJ
Folate pathway MIC/25 μM

Salicylate synthase 3VEH Iron acquisition
MIC99/156

μM

Transcription factor IdeR 1U8R Iron acquisition control
MIC90/17.5

μg/ml

Flavin-dependent
oxidoreductase MelF

2WGK
Needed to withstand ROS-and

RNS-induced stress
MIC/13.5 μM

Leucyl-tRNA synthetase 2V0C Protein synthesis MIC/25 µM

3-dehydroquinate
dehydratase

2Y71 Shikimate pathway
MIC/6.25

µg/mL

3-dehydroquinate
dehydratase

15 PDB structures Shikimate pathway
MIC/100
mg/ml

Haloalkane dehalogenase 2QVB Unknown Kd/3.37 µM 

b [33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

b [43]

a b

Structure IUPAC Name Enzymatic
Inhibition

(2S,2′S,3S,3′S,4R,4′R,5R,5′R,6S,6′S)-6,6′-([1,1′-biphenyl]-4,4′-
diylbis(azanediyl))bis(2-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-
triol)

Biosynthesis of l-
alanine 

tert-butyl 2-(4-(benzyloxy)benzamido)-3-carbamoyl-4,7-
dihydrothieno [2,3-c]pyridine-6(5H)-carboxylate

Biosynthesis of l-
alanine 

N , N -bis(benzo[d]thiazol-2-yl)-2-(isonicotinamido)cyclobutane-1,3-
dicarboxamide

Biosynthesis of l-
alanine 

(Z)-N-(2-isopropoxyphenyl)-2-oxo-2-((3-
(trifluoromethyl)cyclohexyl)amino)acetimidic acid

Biotin biosynthesis
pathway 

(E)-4-((2-(1-naphthoyl)hydrazono)methyl) benzoic acid
Biotin biosynthesis
pathway 

N-(2,5-diethoxy-4-(3-(4-nitro-1,3-dioxoisoindolin-2-
yl)propanamido)phenyl) benzamide

Cell wall 

[24]
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3. Data Application and Management in Tuberculosis Drug
Development

Massive data and complex data analysis are the hallmark of the fourth industrial revolution (4IR), profoundly

impacting our daily lives’ coordination and conduct. The rise of a big data approach transformed our strategies to

deal with age-old challenges in tuberculosis drug development through innovation in cloud data storage and

management and improvement in bioinformatics and cheminformatics algorithms. Furthermore, the affordable

sequencing technology enables studying all aspects of molecular characters of diseases. Examples are

epigenetics, RNA sequencing, metagenomics, targeted sequencing, whole-genome sequencing, and variant

detection sequencing . SBDD and other forms of drug development leverage the analysis of vast biological and

chemical data generated and stored on publicly available database repositories in cyberspace .

Considering that tuberculosis is a long-standing disease, volumes of accumulated information await usage to curb

this infection. Information on TB drug development is available on the TB Database

(http://tbdb.bu.edu/tbdb_sysbio/MultiHome.html; accessed on 5 September 2021) . Similarly, Mycobrowser

(https://mycobrowser.epfl.ch/; accessed on 5 September 2021)  contains information on mycobacterium multi-

omics. This repository  stores experimental and computational models of TB molecular mechanism pathways

Structure IUPAC Name Enzymatic
Inhibition

(Z)-N-(2-(5-methyl-1H-1,2,4-triazol-3-yl) phenyl)-4-
(methylsulfonamido)benzimidic acid

Cell wall 

(Z)-5-(furan-3-ylmethylene)-6-hydroxy-3-(4-methoxyphenyl)-2-
thioxo-2,5-dihydropyrimidin-4(3H)-one

Cell wall 

N-(1,3-dioxo-2-(2-(pyrrolidin-1-yl)ethyl)-2,3-dihydro-1H-
benzo[de]isoquinolin-5-yl)-N-oxohydroxylammonium

DNA metabolism 

2-(10-hydroxydecyl)-5,6-dimethoxy-3-methylcyclohexa-2,5-diene-
1,4-dione

DNA metabolism 

7-chloro-3,5-dihydro-4H-imidazo [4, 5-d]pyridazin-4-one DNA metabolism 

4-(7-chloroquinolin-4-yl)-N-(4-fluorophenyl)piperazine-1-
carbothioamide

DNA topology 

4-((3-acetyl-1-benzyl-2-methyl-1H-indol-5-yl)oxy)butanoic acid Folate pathway 

5-(4-nitrophenyl)furan-2-carboxylic acid Iron acquisition 

1-(3-chloro-4-methylphenyl)-3-tosylpyrrolidine-2,5-dione
Iron acquisition
control 

(E)-N-(4-(2-(4-((5-(diethylamino)pentan-2-yl)amino)-6-
methoxyquinolin-2-yl)vinyl)phenyl)-N-oxohydroxylammonium

Needed to withstand
ROS- and RNS-
induced stress 

(Z)-4-((2-(4-(4-bromophenyl)thiazol-2-yl)hydrazono)methyl)-2-
methoxy-6-nitrophenol

Protein synthesis 
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and several pathogenic mycobacteria. Mycobrowser also connects with UniProt (https://www.uniprot.org/;

accessed on 5 September 2021) , the most widely used protein database containing mycobacterium protein

information. Clinical data on TB are also accessible on the TB Portals (https://tbportals.niaid.nih.gov/; accessed on

5 September 2021) . Innovations in structural biology and bioinformatics resulted in an influx of structural data.

These interventions led to thousands of 3D protein structures generated from X-ray crystallography, nuclear

magnetic resonance (NMR), cryo-electron microscopy (cryo-EM), and homology modeling experiments. PDB ,

PDBsum , and other structural databases store these research results. Hence, the availability of chemical

libraries (Table 4) was made possible by expanding the digital chemical space  and advancements in chemical

synthesis .

Table 4. Accessible public and commercial repositories on TB drug development.

Note: * links accessed 5 September 2021, ** and *** indicate public and commercial types of databases,

respectively.
3.1. SBDD Based on Mtb Proteins

The availability of therapeutically important protein 3D structures made SBDD the most desirable approach for drug

design and development ahead of ligand-based drug design (LBDD). However, to enhance the success rate of

recent drug development initiatives, it has become customary to integrate SBDD with LBDD approaches in a

complementary manner. Using the 3D structures of targets to study and exploit the catalytic pocket, SBDD can

search and create appropriate ligands that can subsequently be verified and optimized experimentally. To mitigate

the difficulties associated with experimental techniques, several types of SB and LB tactics, or a mix of them, might

be used at various phases of TB drug design and development. With the availability of TB multi-omics and a large

amount of structural biodata, we can use cheminformatics data mining, data engineering, docking, and homology

modeling to identify potential targets.

Structure IUPAC Name Enzymatic
Inhibition

3-(((Z)-5-((E)-4-(benzyloxy)benzylidene)-3-methyl-4-oxothiazolidin-
2-ylidene)amino)benzoic acid

Shikimate pathway

7-((4,5-dihydroxy-6-(hydroxymethyl)-3-((3,4,5-trihydroxy-6-
methyltetrahydro-2H-pyran-2-yl)oxy)tetrahydro-2H-pyran-2-
yl)oxy)-5-hydroxy-2-(4-hydroxyphenyl)chroman-4-one

Shikimate pathway

2-phenyl-5-(4H-1,2,4-triazol-4-yl)benzo[d]oxazole Unknown 

[41]

[42]

[43]

[49]

[50]

[19]

[51]

[21]

[52]

Database Number of
Compounds Website * Ref.

** Enamine REAL 700 million https://enamine.net/

** ZINC 230 million http://zinc.docking.org/

** GDB-17 166 billion http://gdb.unibe.ch/

** PubChem 97 million https://pubchem.ncbi.nlm.nih.gov/

** ChemSpider 77 million http://www.chemspider.com/

*** eMolecules 24.6 million http://www.emolecules.com  

** ChEMBL 1.9 million https://www.ebi.ac.uk/chembl/

*** ASINEX 600,000 http://www.asinex.com  

** NCI 460,000 https://cactus.nci.nih.gov/download/roadma/
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Virtual screening facilitates choosing the most promising prospective ligand(s) from a database comprising millions

of identified molecules for a specific tuberculosis target. The output of candidate compound validation using

structure-activity (SA) studies enables a better understanding of the mechanism of action and ADMET (absorption,

distribution, metabolism, excretion, and toxicity) properties, thus allowing better development of compounds with

improved activity and better pharmacological profiles. The information gathered from this research (both good and

negative outcomes) may be saved and used for additional iteration and technique optimization in the future design

of new tuberculosis drugs. More than 800 CADD software and webservers (free or commercial) are available,

hosted by the Swiss Institute of Bioinformatics at  www.click2drug.org  (accessed on 5 September 2021). These

provide unlimited opportunities to explore drug discovery and design .  Table 5 summarizes some available

CADD software.

Table 5. Accessible websites to retrieve software for CADD.

[1]

Purpose Program Website * Refs.

Prediction of
binding sites

and
drugability

** fpocket https://github.com/Discngine/fpocket

** PockDrug
http://pockdrug.rpbs.univ-paris-diderot.fr/cgi-bin/index.py?

page=home

**
PocketQuery

http://pocketquery.csb.pitt.edu/

** PASS http://www.ccl.net/cca/software/UNIX/pass/overview.html

Docking

** Autodock http://autodock.scripps.edu/

*** GOLD https://www.ccdc.cam.ac.uk/solutions/csddiscovery/components/gold/

*** Glide https://www.schrodinger.com/glide/

*** FlexX https://www.biosolveit.de/flexx/index.html

QSAR

*** SeeSAR https://www.biosolveit.de/SeeSAR/

**
Open3DQSAR

http://open3dqsar.sourceforge.net/?Home

** ChemSAR http://chemsar.scbdd.com/

ADMET *** QikProp https://www.schrodinger.com/qikprop

*** ADMET
Predictor

https://www.simulations-plus.com/software/overview/

** admetSAR http://lmmd.ecust.edu.cn/admetsar1/home/
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Note: * links accessed 5 September 2021, ** and *** mean freely and commercially accessible, respectively.

SBDD takes advantage of target protein 3D structure availability. However, if the 3D model of the therapeutically

important receptor is not available, computational approaches through homology modeling enable the 3D model

prediction of the receptor. Homology modeling or comparative modeling is the most reliable method for 3D protein

structure prediction. The methodology entails predicting the 3D structure of the receptor from a homologous protein

with at least a 40% similarity index. Threading and ab initio modeling are also methods of protein structure

prediction . After obtaining the 3D structure of the target, it is crucial to validate the model by examining the

molecular characteristics in a Ramachandran plot. This metric shows the distribution of the ϕ and ψ dihedral angle

conformations of the constituting residues in the receptor structure . There are several techniques to validate the

predicted protein model .

After determining the target structure, the next step is to determine the catalytic pocket. Catalytic or binding

pockets are tiny spaces where ligands attach to the target, inducing the intended result. Consequently, it is crucial

to identify the most suitable location on the target protein for ligand binding. Even though protein is dynamic in

nature, only a few techniques can identify possible binding residues in the binding pocket. Identification of binding

sites on a particular target requires the knowledge of interaction energy and van der Waals (vdW) forces. There are

many strategies for catalytic site mappings using interaction energy computation through SBDD. This technique

can identify locations on the target receptor that interact positively with functional moieties on the drug-like

compounds. These approaches find probes that have energetically advantageous interactions with proteins. Q-

SiteFinder  is an energy-based technique for predicting catalytic sites widely utilized in the pharmaceutical

industry. It is possible to compute the vdW interaction energies of proteins with a methyl probe by using this

approach. Those with favored energy values are maintained and grouped in the final product. The total interaction

energies of these probe clusters serve as the determinant of their ranking. Aside from that, the functional

annotation of interacting protein residues in the binding site allows for the determination of the binding site.

It is also essential to remember that additional possible binding sites, referred to as allosteric sites, may also be

present on the target protein surface. Drug development attempts in the conventional sense frequently target the

important (orthosteric) binding site to prevent natural substrate binding. Besides, researchers have unveiled

noncatalytic sites of Mtb proteins. Shi and colleagues identified a second druggable binding site (allosteric) in Mtb

UDP-galactopyranose mutase (UGM) . MS-208, a well-known Mtb-UGM inhibitor, was categorized as a

noncompetitive/mixed inhibitor based on NMR and kinetics investigations. This observation implies that MS-208

binds to another location in the receptor and affects the natural enzyme substrate from recognizing the primary

pocket. They  predicted the allosteric sites for MS-208 on the enzyme via docking with AutoDock Vina . The

two identified regions, designated A-site and S-site, show favorable and stable interaction with the ligand after

molecular dynamics using Amber . Simulations facilitate structural and functional relationship determination.

Because the A-site-bound structure demonstrated the most stable complex formation with good interaction energy

and a higher number of contacts, they hypothesized that this site represents an allosteric druggable binding site in

Mtb-UGM .

Purpose Program Website * Refs.

**
VirtualToxLab

http://www.biograf.ch/index.php?id=home
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After appropriate identification of all druggable sites on the receptor, next comes hit discovery, accomplished by

docking chemical libraries into the active cavity of the target receptor. Earlier, the routine in lead discovery required

choosing a specific collection of ligands that can play a critical role in identifying and optimizing leads . SBDD

blends two distinct approaches for hit search (VS and de novo design) into a single framework.

3.2. Virtual Screening as a Method of Lead Identification

Currently, vs. has emerged as a dynamic and profitable technique in the pharmaceutical business, particularly for

prospecting new drug-like compounds or so-called lead identification . There are two forms of VS: ligand-based

vs. (LBVS) and structure-based vs. (SBVS). Biological data is processed in LBVS to distinguish inactive molecules

from active ones. Based on consensus pharmacophores, this information facilitates highly functional scaffold

identification , similarity, or various descriptors. LBVS produces results that are closely related to known active

pharmaceutical ingredients. The procedure involves scanning chemical libraries of structures to find molecules with

known like potency or that share a pharmacophore or moiety with known activity. The results are typically positive

(pharmacophore substructure similarity search) . A moiety substructure search requires using the 2D- or 3D-

structure of various ligands to find closely related structures. Usually, comparable substances have similar effects

when using ligand-based techniques; thus, they are called similarity methods. For example, if one or more active

compounds are known, it is feasible to search a database for comparable but more potent compounds .

SBVS allows docking numerous chemical compounds against an enzyme-binding or catalytic site in a short time

. The computer algorithms facilitate target protein docking with one of the vast libraries of drug-like

chemicals that are commercially or publicly accessible (Table 4). Subsequent steps for search refinement are

molecular docking, MD simulations, and experimental tests to obtain IC  or other efficacy parameters . SBVS

relies on the scoring of ligands to function correctly. In contrast to ligand-based techniques, structure-based

techniques do not rely on previously collected experimental data to be effective.

3.3. De Novo Drug Design—A Signature to the Drug Discovery Process

De novo drug design involves creating unique chemical compounds from the ground up, starting with molecular

building blocks. The essence of this technique is to design chemical structures of tiny molecules that bind to the

target active site with high affinity , then test these structures experimentally. A variation in approach is typically

employed when designing from scratch, and the design algorithm must integrate the search space information

acquired. Usually, researchers incorporate positive and negative designs with one another. When using the former

strategy, a search is to constrain certain regions of chemical space, which increases the likelihood of discovering

results with notable characteristics. The search parameters are set in the negative mode to avoid choosing false

positives . Despite its sufficiency in functional scoring analysis, chemical compound design using computational

approaches connects organic synthesis but cannot replace it . It is fundamental in the design stage to conduct a

thorough evaluation of candidates’ compounds. One of these evaluation tools is the scoring function; multiple

scoring functions for multi-objective drug discovery hybrids  create many different characteristics simultaneously.

[75]

[82]

[83]

[84]

[85]

[86][87][88][89]

50
[90]

[91]

[92]

[93]

[94]
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De novo drug design is in two categories: (A) ligand-based drug design and (B) receptor/enzyme-based drug

design. The latter method is popular currently. Creating appropriate small molecules for enzyme-based design

requires high-quality target protein structures and precise knowledge of proteins’ active sites. The approach entails

small molecules designed by matching fragment moiety into the target proteins’ binding pockets. The process

requires using computer programs or co-crystallization of the ligand with the receptor . Two ways to execute the

ligand-based design are by linking together crucial components, such as atoms or fragments (single rings, amines,

and hydrocarbons) to produce an entirely new chemical molecule, or by simply generating ligands from a single

parent unit. The fragment-linking technique uses information of the active site to map the likely interaction locations

for the different functional groups contained in the design drug fragments . One must link these functional

groups’ moieties to one another to form an absolute compound. The fragment-growing method features fragment

development within the active site, monitored by appropriate search algorithms .

These search algorithms make use of scoring systems to determine the likelihood of growth. Fragment-based de

novo design is a method of creating new molecules that use the whole chemical space. When using the linking

technique, the selection of linkers is imperative. The outside-in strategy and the inside-out approach are both

methods for anchoring fragments in the binding site. The outside-in system is the more common method. The

outside-in methodology involves the construction blocks placed near or on the edge of the binding site, and the

active site gradually expands inward. The inside-out method uses construction pieces randomly placed within the

active site region, then constructed outward .

3.4. Molecular Docking and Density Functional Theory Applied to Mtb

Molecular docking has been a prime computational technique of SBVS against Mtb enzymes. The molecular-

docking technique was the subject of many published research articles as a tool in drug design against Mtb (Table

6). According to the Himar1 transposon mutagenesis study conducted by DeJesus in 2017 , the majority of the

enzymes targeted by this method are enzymes encoded by crucial genes, with the exclusion of antigens BioA,

NarL, 85c, EthR, and LipU. Although this technique assigns nonessentiality to genes based on in vitro growth, it

cannot be relied on to determine whether genes are nonessential in vivo . For instance, the NarL enzyme is

necessary for anaerobic survival throughout infection, while BioA is crucial for biotin synthesis during the latency

phase of Mycobacterium TB infection . Furthermore, the EthR protein functions in developing ethionamide

resistance and, consequently, survives potentials after drug treatment .

Table 6. Studies involving SBVS molecular-docking approaches against Mtb enzymes.

[95]

[96][97]

[97]

[98]

[99]

[100][101]

[102][103]

[104][105]

Program Library of Compounds Screened Enzyme (Function) Ref.

AutoDock Vina
FDA-approved: DrugBank (1932); eLEA3D

(1852)
MurB and MurE (peptidoglycan

biosynthesis)

  ChemDiv dataset (135,755)
DprE1 (arabinogalactan

biosynthesis)

[106]

[107]
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Many studies of the different targeted enzymes indicate that many are engaged in either intermediate metabolism

or lipid metabolism in Mtb. In addition, DNA and RNA regulatory enzymes and cell wall regulator proteins make up

the remaining target proteins. Researchers show at least three SBVS efforts against DprE1 and InhA, with InhA

being the most frequently targeted. Studies show that InhA is the ultimate target of both isoniazid and ethionamide

once activated . As a result, InhA provides a validated target whose suppression has an in vivo influence on the

survival of Mtb. Also, numerous antimycobacterial medicines target DprE1 in the current anti-TB research pipeline

. PyrG, a newly confirmed TB target, also attracted the attention of researchers . The chemicals used in

most research works (Table 6) are from generic chemical databases containing millions of compounds, while TB-

specific databases and natural product, therapeutic repurposing-focused, and other libraries comprise other

chemical compounds reported. As a result, the focus of these early drug discovery initiatives continues to be on

totally new drug-like chemical discoveries. The apparent lack of further experimental evidence (in vitro or in vivo)

showing compound bioactivity in many of these investigations (Table 6) is an evident issue that precludes these

anticipated compounds from being carried onward .

Another important computational tool in drug discovery is the density functional theory (DFT), which applies to TB

research for the investigations of catalytic processes , structure-activity relationship analysis , and

inhibitor potency . Chi and colleagues  adopted DFT in an anti-tubercular study to confirm their first

Program Library of Compounds Screened Enzyme (Function) Ref.

 
NCI; Enamine; Asinex; ChemBridge; Vitas-M

Lab (total: 5.6 million)
InhA (mycolic acid biosynthesis)

AutoDock 4.0 Super Natural II database (570) RmlD (carbohydrate biosynthesis)

CDOCKER Enamine REAL database (4.5 million) BioA (biotin biosynthesis)

Frigate ZINC database (2 million) Antigen 85c (lipid metabolism)

Glide FDA-approved (6282) LipU (lipid hydrolysis)

  ChEMBL antimycobacterial (30,789)
DprE1 (arabinogalactan

biosynthesis)

  FDA-approved (3176) PknA (protein kinase)

  Preselected from Maybridge database (1026) InhA (mycolic acid biosynthesis)

  Preselected from DrugBank database (1082) AroB (shikimate pathway)

GOLD
Drugs Now subset of ZINC database (409,

201)
EthR (transcriptional regulator)

GOLD and
Plants

Preselected from Enamine database (2050) MbtI (mycobactin synthesis)

GOLD and
RFScore

Selection from 9 million compounds (4379) AroQ (Shikimate pathway)

UCSF Chimera CDD-823953; GSK-735826A
PyrG and PanK (siosynthesis of

DNA and RNA)
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observations of a change in an inhibitor-binding mechanism in the MbtI protein after adding a substituted

enolpyruvyl moiety to the parent chemical structure previously generated from isochorismate. From their 

observation, there were two distinct binding mechanisms (states 1 and 2) noted in the X-ray crystal structures of

MbtI complexed with its inhibitors, indicating that the active site is flexible enough to permit ligand binding. With the

aid of Gaussian 09 software application  and a theoretical-level hybrid B3LYP , they computed the

global minimum configuration of the (E)-3-(1-carboxyprop-1-enyloxy)-2-hydroxybenzoic acid (AMT), Z-methyl-AMT,

and E-methyl-AMT inhibitors complexed in solution. The results revealed that the global minimum geometry of both

free Z- and E-methyl-AMT is comparable to its bound geometry (state 2), showing that its arrangement enables

binding to MbtI. The computation of conformational entropy quantities for the three molecules indicated that Z-

methyl-AMT is the least disorganized. Z-methyl-AMT has a conformational lock provided by the methyl moiety in its

structure. Even though a pure Z-isomer has not yet surfaced to distinguish it from the E-isomer empirically, this

discovery  justifies the powerful interaction of methyl-AMT to MbtI. It provides further knowledge for the future

creation of new and effective MbtI drug-like compounds with the aid of DFT.

Despite the widespread success and popularity of DFT, it has flaws stemming from the approximations employed in

its operational mode. DFT is difficult to use for system descriptions mainly composed of dispersion (van der Waals)

forces, such as gaseous systems, or systems in which dispersion contributes significantly, such as biomolecular

systems . Thus, numerous research studies examined the incorporation of van der Waals  to

improve performance and enhance this technique. In addition to these constraints, the description of global

potential energy surfaces of charge exchange excitations  is a prime restriction of DFT use in computational

drug design. DFT usage overly favors sophisticated users and requires thorough reviews to determine the level of

theory/methods to use for a particular system.
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