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In recent years, there has been a growing interest for electrospun polymeric wound dressings with fiber diameters

in the nano- and micrometer range. Such wound dressings display a number of properties, which support and

accelerate wound healing. For instance, they provide physical and mechanical protection, exhibit a high surface

area, allow gas exchange, are cytocompatible and biodegradable, resemble the structure of the native extracellular

matrix, and deliver antibacterial agents locally into the wound.
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1. Introduction

The wound healing process is associated with four overlapping and well-orchestrated stages: homeostasis,

inflammation, proliferation and remodeling. Each stage involves a cascade of events to ensure prevention of blood

loss, elimination of bacterial contamination, regeneration and formation of a new skin tissue, respectively. A

variation from the norm in this process results in a delay or prolongation of any of the healing stages, which in turn

leads to impaired healing . The interruption in the healing process may occur for a number of reasons connected

to one’s lifestyle and health condition. For example, smoking, malnutrition, obesity, low mobility, neuropathy,

diabetes, vascular diseases and skin disorders have been linked to the increasing chronicity of wounds, where

healing has not been achieved within 3–6 weeks .

Compromised wound healing represents a complex problem of multiple dependent molecular and cellular

processes that are closely intertwined. A slight dysregulation in those processes leads to a development of a

chronic non-healing condition, which requires a combinational approach of diverse strategies to facilitate healing.

Different polymeric wound dressings have been created to supply favorable environment for wound healing, to

absorb exudate, allow vapor exchange across the scaffold, maintain moist conditions, provide mechanical support

and protect from further bacterial contamination. Such wound dressings have also been employed to deliver active

agents such as antibiotics, antiseptics, anti-inflammatory drugs and biomolecules to direct the healing process to

reach complete healing   (Figure 1).
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Figure 1. Functions of protein-based nanofibrous mats with incorporated antimicrobial agents for wound healing.

They allow fibroblast adhesion (often through cell-recognizing motifs the fiber carries), oxygen exchange and show

bacteriostatic or bactericidal activity.

The leading causes of non-healing chronic wounds are infection, pathological inflammation and formation of

biofilms  . Therefore, wound care usually comprises of debridement followed by antimicrobial treatment and

application of wound dressings. Debridement is required to clean the wound bed from exudate, necrotic tissue and

bacterial load. Antimicrobial treatment prevents further bacterial growth and formation of biofilms. Antimicrobial

agents usually follow one or several strategies to attack bacterial cells, including disruption of the bacterial cell wall,

interruption of nucleic acid and protein synthesis, and dysregulation of metabolic pathways   (Figure 1).

Antiseptics, antibiotics or other biomolecules are either applied directly or incorporated into a wound dressing . In

comparison to systemic administration of antimicrobial treatments, topical application requires lower

concentrations, displays fewer side effects and lowers the risk of developing antibiotic resistance . Topical

application of antimicrobial agents such as antibiotics often combines a rapid initial release to kill bacteria or inhibit

bacterial growth followed by a slower release to prevent further bacterial growth . In order to prevent

development of microbial resistance to antibiotics, silver nanoparticles have been used in certain materials for

wound healing instead of antibiotics. However, recent studies demonstrate that bacterial resistance also occurs

against silver nanoparticles due to an induction of nanoparticle aggregation as a result of the production of

adhesive proteins by the bacteria. This problem can be overcome by additional stabilization of the nanoparticles by

surfactants or polymers .

A variety of wound dressings facilitating wound healing are currently available on the market and new advanced

materials are being developed (e.g., films, hydrogels, foams, hydrocolloids and nanoparticles). In particular, large
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research efforts have been directed to fabricate nanofibers . Unlike other types of biomaterials, nanofibers

stand out due to their unique structure and the tunability of their physical and mechanical properties. Their

versatility and the easy fabrication process facilitate obtaining materials with desired characteristics for the complex

wound healing process. High surface area and homogenous drug distribution makes nanofibers attractive as drug

delivery systems with high drug loading capacity and controlled release. Resemblance of nanofibers to collagen or

elastin fibers in the extracellular matrix (ECM) of healthy skin allows them to provide additional support for

fibroblasts and keratinocytes, which adhere to the fibers, migrate across the wound bed and help regenerate and

close the damaged tissue. Modifications of the surface morphology of nanofibers and the porosity of the

nanofibrous matrix further promote adherence and migration of these cells   (Figure 1). However, even though

electrospun fibers are often have a high porosity, this property is dependent on the fiber diameter and is difficult to

control. This may also limit cell penetration into the scaffold in some cases .

A variety of methods to fabricate fibers have been developed over the years and mainly include solution and melt

electrospinning . This review focuses on nanofibers created from protein solutions using the solution

electrospinning process. Electrospinning is based on applying a high voltage to a polymer solution to transform a

drop at the needle tip into a cone shape in order to generate a jet. The ejected jet undergoes a number of

instabilities, during which the solvent from the solution is evaporated and dry fibers are collected on the grounded

or oppositely charged plate. The process is shown in Figure 2. The morphology, diameter size and distribution of

electrospun fibers can be adjusted and tuned according to the solution (e.g., concentration, molecular weight,

viscosity, conductivity, surface tension, dielectric constant, evaporation rate and dipole moment) and process

parameters (e.g., temperature, humidity, flow rate, voltage and working distance) . For example, larger fiber

diameter is often associated with higher flow rate, higher applied voltage and lower distance between the needle tip

and the collector. However, there are exceptions to these rules as for instance a higher voltage may lead to more

solution deposition . Therefore both, the properties of the solution and the process parameters should be

considered during optimization of the electrospinning process .
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Figure 2. Electrospinning process. A polymer solution is subjected to a high voltage output to create a polymer jet

that deposits as dry fibers on the collector.

The most widely used type of solution electrospinning is single-nozzle electrospinning (also known as blend

electrospinning), which itself has a few subcategories with some variations including co-axial and emulsion

electrospinning . These techniques are commonly employed to incorporate drugs, including active biomolecules,

and are summarized in Figure 3. In blend electrospinning, the drug is mixed into the polymer solution—in this case

the protein solution—directly. In contrast, in co-axial electrospinning two different solutions are used, and the drug

is incorporated either in the outer (shell) or inner (core) solution . Additionally, the drug can be incorporated into

an emulsion to be electrospun, where the final product is similar to that obtained by co-axial electrospinning due to

the lengthening of the emulsion within the jet, which creates a core-shell structure . The electrospinning

technique is chosen depending on the solubility of the polymer in a particular solvent, as well as its stability during

the electrospinning process and the desired release kinetics of the electrospun nanofibers. During blend

electrospinning, organic and sometimes highly toxic solvents are commonly used and may affect structure, stability

and activity of the drug. Therefore, co-axial and emulsion electrospinning provide an alternative, where the drug

can be dissolved in a more favorable solvent . Nevertheless, all of these techniques involve high

voltage, which may potentially damage the therapeutic agent . In such a case, there is another method that is

based on a functionalization of the nanofiber surface after electrospinning by attachment of the drug (Figure 3).

However, a drawback of functionalization of the fibers as compared to other methods, where the drug is

incorporated into the fibers, is that the drug lacks a coating material, which normally acts as a protective layer to

provide longer shelf life .
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Figure 3. Fabrication of protein-based electrospun fiber mats by different types of solution electrospinning, namely

blend, co-axial and emulsion electrospinning. The protein is first dissolved in a volatile solvent and starts unfolding,

which is a prerequisite for successful electrospinning of proteins. In blend electrospinning, the active agent is

directly added to the polymeric protein solution. In co-axial electrospinning, the active agent is either dissolved in

the shell or the core solution. In addition to the protein solution, a second natural or synthetic polymer is used in co-

axial electrospinning. In emulsion electrospinning, the drug is dissolved in the emulsion droplets (inner phase). In

addition, the fibrous mat can be functionalized by adding the active agent after electrospinning.

2. Proteins as a Promising Starting Material for Electrospun
Wound Dressings

The initial use of synthetic polymers in electrospinning has noticeably shifted towards implementation of natural

polymers such as proteins and carbohydrates . In comparison to synthetic polymers such as polylactic acid

(PLA)   and polyurethane (PU) , natural polymers do not purely rely on the use of harsh and toxic organic

solvents for dissolution. Therefore, they provide an environmentally friendly alternative, which may additionally offer

better drug stability and activity as compared to pharmaceutical standard formulations, safer manufacturing and the

possibility of an application on skin . However, this comes at a cost of easy fabrication and reproducibility.

Evaporation rate, surface tension and conductivity of the employed solvent greatly affect electrospinnability of the

protein solution . Moreover, electrospinning of proteins is more challenging due to the intrinsic variations in

complexity of their structures, molecular weight, surface charge as well as ionic, hydrogen and disulfide bonds 

. The electrospinnability of proteins depends not only on their solubility in a specific solvent, but also on the

degree of protein unfolding in a particular solvent   and chain entanglement   (Figure 3). The choice of

the solvent further affects crystallinity, mechanical properties, fiber size and morphology . Therefore, the

addition of synthetic polymers is often necessary to electrospin the solution continuously and without artifacts 

.

Proteins demonstrate attractive features as antimicrobial delivery system due to their natural origin, fast

biodegradability and cytocompatibility . Proteins used in electrospinning for wound healing applications are

mainly obtained from two distinct sources: plants and animals . Their stability, activity and degradation

depend on the protein size, chemical structure, isolation and purification processes . Different methods for

protein extraction and purification may affect the obtained raw material’s purity and composition , which in

turn impacts reproducibility of the electrospinning process and properties of the final product .

Some of the main differences between plant- and animal-based proteins are their availability and price. Plant

proteins tend to be available in larger amounts and at a lower cost . As compared to synthetic polymers,

proteins are in general more challenging to electrospin due to their heterogeneity in structure and surface charge,

solvent-dependent protein unfolding and low viscosity, which lead to a non-continuous electrospinning process and

formation of beads  . Moreover, the final product may lack stability in water, resulting in a loss of fiber structure

. To compensate for these drawbacks, different strategies have been implemented that include the use of

cross-linking agents, toxic organic solvents and addition of synthetic polymers .
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3. Electrospinning of Plant-Derived Proteins for Wound
Healing Purposes

Plant proteins that have been used to prepare electrospun wound dressings alone or in combination with other

natural and/or synthetic polymers are summarized in Table 1. These include zein protein, soy protein and pea

protein.

Table 1. Electrospun plant-based proteins with antimicrobial activity.

Protein
Co-

Polymer

Electrospinning

Type
Solvent

Antimicrobial

Agent

Tested Bacterial

Strain
Reference

Pea PVA, CA Uniaxial Water CA
E. coli, L.

monocytogenes

Soy PEO Uniaxial NaOH None
S. aureus, P.

aeruginosa

Zein None Co-axial AA ATPPB E. coli, S. aureus

Zein PU/CA Uniaxial
DMF,

MEK
Streptomycin

E. coli, S.

typhimurium, V.

vulnificus, S. aureus,

B. subtilis

Zein HA Uniaxial TFE, AA Salicylic acid S. aureus

Zein PU Uniaxial
DMF,

THF
Ag NPs E. coli, S. aureus

Zein PCL, GA Uniaxial FA, AA GA E. coli, S. aureus

Zein PCL, GA Uniaxial, FA, AA GA, C. E. coli, S. aureus
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Key: AA, acetic acid; ATPPB, allyltriphenylphosphonium bromide; CA, cinnamaldehyde; CHL, chloroform; DCM,

dichloromethane; DMF, N,N-dimethylformamide; EtOH, ethanol; FA, formic acid; GA, gum arabic; GT, gum

tragacanth; HA, hyaluronic acid; MEK, methyl ethyl ketone; MRSA, methicillin-resistant S. aureus; NaOH, sodium

hydroxide; OEO, orange essential oil; PLA, polylactic acid; PU, polyurethane; TFE, 2,2,2-trifluoroethanol; THF,

tetrahydrofuran.

4. Electrospinning Animal-Derived Proteins for Wound
Healing Purposes

multilayer officinalis

Zein PCL Uniaxial
TFE,

DCM

Tetracycline

hydrochloride
MRSA

Zein None Uniaxial
EtOH,

water
Ag NPs E. coli, S. aureus

Zein None Uniaxial
EtOH,

water
Gentamicin E. coli, S. aureus

Zein None Uniaxial
EtOH,

water
Ag NPs E. coli, Bacillus

Zein None Co-axial
EtOH,

water
OEO E. coli

Zein PEO Co-axial
EtOH,

water

Tetracycline

hydrochloride
E. coli, S. aureus

Zein GT, PLA Uniaxial

EtOH,

water,

CHL

Tetracycline

hydrochloride

S. aureus, P.

aeruginosa
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A lot of animal-derived proteins used in electrospinning are obtained from milk, including casein, whey, lactoferrin

and lysozyme, or connective tissue, such as collagen and elastin. In comparison to plant-derived proteins that

mostly require an incorporation of antimicrobial agents, proteins obtained from milk possess innate antimicrobial

properties due to their iron-binding properties   and ability to disrupt bacterial cell walls . Therefore, such

proteins carry a dual function as a material basis with antimicrobial effect (Table 2).

Table 2. Electrospun animal-based proteins with antimicrobial activity.

[56][57] [56][58]

Protein
Co-

Polymer

Electrospinning

Type
Solvent Antimicrobial Agent

Tested

bacterial

Strain

Reference

Casein PEO Uniaxial Water Ampicillin
E. coli, S.

aureus

α-

lactoglobulin
PEO Uniaxial Water Ampicillin

E. coli, P.

aeruginosa,

B.

thailandensis

Lactoferrin Gelatin Uniaxial
FA,

DMF
None

E. coli, S.

aureus

Lysozyme CS, PVA Uniaxial
AA,

water
CS

S. aureus, B.

subtilis, S.

flexnery, P.

aeruginosa

Keratin PVA, PEO Uniaxial NaOH Ag NPs
E. coli, S.

aureus

Keratin
CS, PHBA,

gelatin

Uniaxial,

multilayer
HFIP Mupirocin

E. coli, S.

aureus
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References

Collagen PLGA
Uniaxial,

multilayer
HFIP

Vancomycin

hydrochloride,gentamicin

sulfate

E. coli, S.

aureus

Collagen PCL Uniaxial HFIP Enterobacteria phage T4 E. coli

Collagen PLA Uniaxial HFIP Levofloxacin
E. coli, S.

aureus

Collagen - Uniaxial HFIP Ag NPs
S. aureus, P.

aeruginosa

Collagen CS Uniaxial
0.5 M

AA
ZnO

S. aureus, E.

coli

Collagen

PCL

(core),

PEO

(shell)

Co-axial

HFIP,

glacial

AA

Doxycycline n.a.

Gelatin

Alginate-

dialde-

hyde

Uniaxial
AA(40%

w/w)

Ciprofloxacin,

gentamicin

P.

aeruginosa,

S.

epidermidis

Gelatin - Uniaxial TFE
Vancomycin,

caspofungin

MRSA, C.

albicans

Gelatin PMETAC Uniaxial FA, AA PMETAC

S. aureus, E.

coli, MRSA,

A. baumannii

Gelatin PVA Uniaxial FA Centella asiatica extract S. aureus, E.

coli, P.
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Silk fibroin PVA Uniaxial Water
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aeruginosa
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doxycycline
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modified silk

fibroin

PCL Uniaxial HFIP
Melamine-modified silk

fibroin

S. aureus, E.

coli

Silk fibroin PEO Uniaxial FA TiO NPs E. coli

Silk fibroin P(LLA-CL) Uniaxial HFIP Curcumin S. aureus

Silk fibroin
PCL, HA,

PEO

Uniaxial,

multilayer

FA,

TFE,

water

Thymol
S. aureus, P.

aeruginosa
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CS,
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S. aureus, E.

coli

Silk fibroin Gelatin Uniaxial FA Ceftazidime
P.

aeruginosa

Silk fibroin   Uniaxial FA Selenium NP coating S. aureus

Silk fibroin Carboxy-

methyl CS

coating
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coli
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