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The nuclear reactor pressure vessel is an important component of a nuclear power plant. It has been used in harsh
environments such as high temperature, high pressure, neutron irradiation, thermal aging, corrosion and fatigue for

a long time, which puts forward higher standards for the performance requirements for nuclear pressure vessel

steel.
nuclear reactor pressure vessels microstructure evolution mechanical properties irradiation
corrosion thermal aging fatigue properties

| 1. Background

In recent years, the global energy crisis has swept the world. Fossil energy, such as coal, oil and natural gas, is
being consumed at a visible rate, resulting in energy shortages. Currently, the world is dominated by coal power
generation. However, the coal power generation not only causes environmental pollution but also leads to energy
exhaustion, which will cause the global power shortage and price rise L2, Nuclear energy is a kind of clean,
efficient, economical and safe renewable energy [Bl. Nuclear energy is one of the effective ways to solve the energy
crisis. However, there has been a global anxiety about the use of nuclear power since the Fukushima accident.
Therefore, research on the safety of nuclear power plants and their components is the key to the global nuclear

power industry.

| 2. Development of Steel for Nuclear Pressure Vessels

Nuclear reactor pressure vessel (RPV) is an important component of nuclear power plant and cannot be replaced
during the entire life cycle. Therefore, the steel used for RPV was generally improved on the basis of the previous
generation of RPV materials. The initial material of RPV was C—-Mn steel used for the boiler. The plate of SA212B,
and the forgings of SA105 and SA182, were selected as the steels for first-generation RPV due to their good
welding performance and high strength. However, the impact toughness and high temperature performance of C—
Mn steel are poor, and the hardenability was insufficient, so the first generation of nuclear pressure vessel steel

has been replaced.

The first generation RPV material was replaced by Mn—Mo-series low-alloy high-strength steel SA302B plate in
order to improve the strength and toughness, which was called the second generation of RPV steel. Subsequently,
the modified SA533B was made by adding 0.4-1% Ni element on the basis of SA302B, which had good strength,
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hardness and toughness, so it was widely used in nuclear reactor pressure vessels 4IBl. RPV materials would be
damaged by strong neutron radiation during the service. However, there were more longitudinal and circumferential
welds in the plates of the first and second generation RPV steels, and the position of the welds was the weak link
of radiation resistance. Therefore, in order to increase the safety and reliability of nuclear pressure vessels during
the service, forging materials were gradually used to decrease the welding areas. Then, the SA508Gr.2 steel was
improved on the basis of SA105 and SA182 forgings by adding Ni and Ni—-Mo elements. However, SA508Gr.2 steel
was gradually eliminated due to insufficient hardenability, poor toughness, and reheat cracks under the surfacing
layer 8],

The possibility of reheat cracks in SA508Gr.2 steel was reduced by decreasing the contents of C, Cr and Mo.
Meanwhile, the Mn was added to improve the strength of RPV materials. Therefore, SAS508Gr steel was improved
as the third-generation nuclear reactor pressure vessel material under this background . At present, SA508Gr.3
steel is the preferred material for RPVs, which decreases the area of weld joints and greatly improves the radiation
resistance as well as the overall safety of nuclear power plants. Meanwhile, the widely used third-generation RPV
materials also include 20MnMoNi55 steel in Germany [EIRILY 16MnD5 steel in France 12l 15X2HM steel in
Russia 13114 and SA508Gr.3 steel in China (121, and so on.

With the improvement of safety performance and increase of service life of nuclear power plants, RPV materials
are developing towards the direction of “large-scale integrated design” and “high safety and longevity operation”,
which requires the steel used in RPV to have better hardenability and higher strength and toughness 18IA7I18],
When using SA508Gr.3 steel, it was difficult to ensure the uniformity of microstructure and the stability of properties
on the extra-thick section due to the insufficient hardenability 22!, Therefore, SA508Gr.4N steel was used as the
new generation nuclear pressure vessel material by increasing Ni and Cr elements and decreasing Mn element
based on SA508Gr.3 steel 29, The reduction of Mn content in SA508Gr.4N steel would decrease segregation and
make the interior of the material pure, and the increase of Ni element could improve the hardenability (211,
Moreover, increasing Cr content could promote the precipitation of precipitates and refine carbides [22],
SA508Gr.4N steel was considered as candidate structural material for the new generation RPV because these had
higher hardenability, better mechanical and irradiation properties compared with SA508Gr.3 steel [121231[24125] The
main chemical composition content of different nuclear pressure vessel materials and A508 series steel are shown
in Table 1 and Table 2, respectively.

Table 1. The content of main alloying elements of reactor pressure vessel steel for PWR (wt.%) [24126],

Materials C Si Mn Cr Ni Mo
A212B <0.30 0.15-0.30 0.85-1.20 - - -
A302B <0.26 0.13-0.32 1.10-1.55 - - 0.41-0.64

https://encyclopedia.pub/entry/39043 2/12



Steel for Nuclear Pressure Vessels | Encyclopedia.pub

Materials C Si Mn Cr Ni Mo
A533B <0.25 0.15-0.30 1.51-1.50 - 0.40-0.70 0.45-0.60
A508-2 <0.27 0.15-0.35 0.50-0.90 0.25-0.45 0.50-0.90 0.55-0.70

US A508-3 <0.26 0.15-0.40 1.20-1.50 <0.25 0.40-1.00 0.45-0.55
20MnMoNi55 0.17-0.23 0.15-0.30 1.20-1.50 <0.20 0.50-1.00 0.40-0.55
22NiMoCr37 <0.20 0.15-0.30 1.20-1.40 <0.40 0.40-1.00 0.40-0.55

16MND5 <0.20 0.10-0.30 1.15-1.55 <0.25 0.50-0.80 0.45-0.55
SFVV3 0.15-0.22 0.15-0.35 1.40-1.50 0.06-0.20 0.70-1.00 0.46-0.64
Chinese A508-3 0.19 0.19-0.27 1.20-1.43 0.06-0.12 0.73-0.79 0.48-0.51
15X2HM®PA 0.13-0.18 0.17-0.37 0.30-0.60 1.80-2.30 1.00-1.50 0.50-0.70
A508-4 <0.23 <0.40 0.20-0.40 1.50-2.0 2.80-3.90 0.40-0.60
T T o .
Elements Grade 1 Grade 2 Grade 3 Grade 4N Grade 5 Grade 6
C (max) 0.35 0.27 0.25 0.23 0.23 0.28-0.33
Si (max) 0.40 0.40 0.40 0.40 0.30 0.35
Mn 0.40-1.05 0.50-1.00 1.20-1.50 0.20-0.40 0.20-0.40 0.75-1.15
Cr <0.25 0.25-0.45 <0.25 1.50-2.00 1.50-2.00 0.70-1.00
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Elements Grade 1 Grade 2 Grade 3 Grade 4N Grade 5 Grade 6
Ni <0.40 0.50-1.00 0.40-1.00 2.80-3.90 2.80-3.90 0.75-0.95
Mo <0.10 0.55-0.70 0.45-0.60 0.40-0.60 0.40-0.60 0.30-0.45

ssel

The safety of nuclear power plant depends on the reliability of nuclear island equipment, especially the nuclear
vessel equipment that directly or indirectly contact with radioactive media, such as nuclear reactor pressure
vessels, steam generators, pressurizers, etc., and the RPV also plays a role in maintaining the operating pressure
balance in the reactor. RPV materials were constantly exposed to high temperature and high pressure during the
service. They determined the safety and service life of nuclear power plant to a great extent [ZZ[28129]30] The
nuclear reactor pressure vessel contained the reactor core to prevent the leakage of radioactive substances.
Therefore, the radiation damage would accompany the whole service life of RPV. Table 3 showed the neutron
fluence rate and the neutron fluence in the whole service cycle of common reactor types. It could be seen from the
Table 3 that the nuclear reactor was seriously affected by neutron irradiation during the service cycle, which would

cause deterioration of the performance of nuclear pressure vessel materials.

Table 3. Neutron fluence rate and neutron fluence in common reactor (E > 1 MeV) 811,

Flux, m2.s71 Lifetime * Fluence, m™2
Reactor Type
(E>1MeV) (E>1MeV)
WWER-440 core weld 1.2 x 10%° 1.1 x 10?4
WWER-440 maximum 1.5 x 10%° 1.6 x 10%4
WWER-1000 3-4 x 101 3.7 x 107
PWR (W) 4 x 1014 4 x 1023
PWR (B&W) 1.2 x 10* 1.2 x 10%3
BWR 4 x 1013 4 x 1022
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* Lifetime fluences for WWERs are calculated for 40 calendar years, PWRs are calculated for 32 Effective Full

Power Years. However, note that this does not include the effect of service or operational life extension.

In addition, the RPV nozzle was also connected with the primary circuit main pipeline cooling system. The RPV
materials were not resistant to corrosion, so a layer of austenitic stainless steel or nickel-based alloy corrosion-
resistant lining would be overlaid on its inner wall to prevent corrosion. The primary cooling system was isolated
from the outside world and oxygen concentration was very low, which would not cause corrosion damage to the
nuclear pressure vessel system during the normal service conditions. However, the damage to the corrosion-
resistant surfacing layer, stress corrosion cracking of alloy pipe penetrations at the bottom and upper closure of
nuclear pressure vessels and potential leakage sources (flanges, bolts, sealing rings, valves) would lead to
corrosion behavior and decrease the service life of materials during the long-term service of RPV. Therefore,

corrosion was also one of the service environments of the RPV.

The service life of nuclear power plants had been increased from the original design of 40 years to 60 years with
the rapid development of nuclear power technology, and it would be extended to 80 years in the future [32I[33134],
The long-term service of nuclear pressure vessel at high temperature would lead to the thermal aging behavior of
the RPV materials, which would affect its microstructures and properties [B2[38I37]38] 5o, the service environment
of RPV also included thermal aging. In addition, the RPV would be affected by fatigue damage during the service.
The frequent temperature fluctuations, the start-up and shut-down process, the process of emergency shutdown
and unloading would cause the RPV subjected to the influence of cyclic thermal stress, which would cause
continuous fatigue damage behavior of the structural components during their lifespan EB4AAL Therefore, the
fatigue damage of RPV materials was an important failure mode during the service. In summary, the service
environment of RPV included high temperature, high pressure, neutron irradiation, corrosion, thermal aging and
fatigue damage, as shown in Figure 1. During the long-term operation of nuclear pressure vessels, it not only the
single service environment damaged the matrix of materials, but also the synergistic damaged of various damage
mechanisms, which might cause the material to fail to meet the design standards and be scrapped in advance in

the later stage of service. Herein, the effect of service environments on RPV materials are discussed one-by-one.
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Figure 1. The service environment of nuclear pressure vessel [Z7122][31][32][38][42]

| 4. Hot Deformation Behavior of Nuclear Pressure Vessel

RPV materials were subjected to different stages before application, such as smelting, ingot casting, forging,
preheat-treatment, rough machining, quenching and tempering heat treatment, post-weld heat treatment, and
delivery. Once the forging parameters were not well controlled during the forging, it was easy to cause mixed-
crystal microstructures and other defects in the RPV materials, which would seriously influence the safe service

performance 28171431 Therefore, it was essential to study the hot deformation behavior for RPV materials.

5. Mechanical Properties of Steels for Nuclear Pressure
Vessel
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The ASTM standard [24 specifies that nuclear pressure vessels must meet certain mechanical properties
requirements after forging, as shown in Table 4. Therefore, it is very important to understand the factors influencing
the mechanical properties of nuclear pressure vessel materials to improve their mechanical properties. The
mechanical properties of RPV materials are affected by many factors, such as alloying elements, heat treatment

parameters, carbides, grain boundaries, segregation as well as hydrogen charging environment, etc.

Table 4. The mechanical properties requirements 241,

Grades 2 Grades 2 Grades 4N Grades 4N

) Grades Grades Grades
Mechanical Class 1 Class 2 Class 1 Class 2
) 1 and 6 Class 6 Class
Properties . and 3 and 3 and 5 and 5 N .
a
Class 1 Class 2 Class 1 Class 2
) 70-95 85-110 95-120
Tensile strength, 80-105 90-115 105-130 115-140
) [485— [585— [655—
ksi [MPa] [550-725] [620-795]  [725-895] [795-965]
655] 760] 825]
Yield strength,
min
36 [250] 50 [345] 65 [450] 85 [585] 100 [690] 60 [415] 75 [515]
[0.2% offset],
ksi [MPa]
Elongation in 2 in.
] 20 18 16 18 16 20 18
or 50 mm, min, %
Reduction of
) 38 38 35 45 45 35 35
area, min, %
Minimum average
value of set of 15 [29] 304l (4.4 350(4 (21
_ ( ( 35 [44] (-29 °C) 20 [&1 (-59 °C)
three specimens, (4.4 °C) °C) °C)
ft-Ibf [J]
Ner
Flalil—oledlldiue UXAiuaduull. J. vialtel. iy, reriuvllll. £uvo, 19, £90—4 [ 4.

2. Cui, R.Y.; Hultman, N.; Cui, D.; McJeon, H.; Yu, S.; Edwards, M.R.; Sen, A.; Song, K.; Bowman,
C.; Clarke, L.; et al. A plant-by-plant strategy for high-ambition coal power phaseout in China. Nat.
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