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Affibodies and designed ankyrin repeat proteins (DARPins) are synthetic proteins originally derived from the

Staphylococcus aureus virulence factor protein A and the human ankyrin repeat proteins, respectively. The use of these

molecules in healthcare has been recently proposed as they are endowed with biochemical and biophysical features

heavily demanded to target and fight diseases, as they have a strong binding affinity, solubility, small size, multiple

functionalization sites, biocompatibility, and are easy to produce; furthermore, impressive chemical and thermal stability

can be achieved, especially when using affibodies. In this sense, several examples reporting on affibodies and DARPins

conjugated to nanomaterials have been published, demonstrating their suitability and feasibility in nanomedicine for

cancer therapy.
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1. Introduction

Therapies based on antibodies (Abs) are undoubtedly pivotal in several fields, including cancer treatments. Abs,

especially monoclonals, have entered the mainstream for their use in the targeted delivery of chemotherapeutic agents

and to manipulate anticancer immune responses. It is not surprising, therefore, that the number of approved Abs-based

therapies is growing worldwide, propelling their clinical relevance . In parallel, advances in nanotechnology to

produce several types of nanomaterials have revolutionized nanomedicine for their small size, customizable surfaces,

solubility, and biocompatibility, which make them able to interact with biological surfaces. For this purpose, biological

macromolecules, particularly Abs, have been used as ligands to create advanced, smart hybrid nanomaterials addressed

to therapeutic approaches .

However, although Abs exhibit strong binding and high selectivity toward the target epitopes and endless engineering

possibilities, they also come with undesired drawbacks for applied purposes. Namely, Abs are large, bivalent, and

multidomain proteins showing intramolecular oxidized cysteines forming disulfide bonds and often a glycosylation pattern.

These features lead to relatively poor thermal and chemical stability. In addition, Abs only use the small complementarity-

determining regions (CDRs) to interact with the antigen, and in some cases, the high cost of manufacturing at a large

scale has been identified due to the complexity in producing the full Ab. This problem and the potential difficulty in

penetrating solid tissues for cancer therapy justified the need for engineered derivatives with reduced size and

composition .

In this context, other biological molecules with affinity properties toward ligands have been identified as valid alternatives

to Abs. Nonantibody-binding proteins with low molecular weight have been identified and proposed as valuable tools and

are currently being designed with improved properties. These antibody-mimicking molecules are grouped into two

categories according to the location of the amino acid residues that mediate the binding to the ligands: those where the

binding occurs via exposed, unstructured loops, and those where the interactions involve secondary structures, usually α-

helices . Among all, the so-called “affibodies” and “designed ankyrin repeat proteins (DARPins)”, both belonging to the

second category, are the most representative of therapeutic means . These affinity proteins have become

invaluable tools in the development of next-generation therapeutics in vitro and in vivo for their unique biophysical and

biochemical properties (see next paragraph), and their suitability in several applications is now well-established. For

instance, affibodies can be easily designed with combined protein engineering approaches resulting in small and robust

protein scaffolds showing favorable folding and stability. Moreover, affibodies encompass only 13 amino acid positions

that differ between binding members and therefore much of the knowledge to manipulate and functionalize these proteins

is known . A few examples can be recalled that highlight the importance of affibodies and DARPins in several

biomedical applications that include both therapeutics  and imaging agents for tumors .

[1][2][3]

[4]

[5]

[5]

[1][3][6][7]

[8][9]

[10][11][12] [13][14]



Considering such high versatility and biological activity, it is not surprising that nanomaterials have also been

functionalized with both affibodies and DARPins to create hybrid and advanced structures for targeted delivery in vitro and

in vivo . Note, in some cases, they gave even more efficient results than immunoglobulins (Igs)-based approaches .

2. Structural and Biochemical Features of Affibodies and DARPins

2.1. Affibodies

In 1984, the amino acid sequence of the virulence factor from Staphylococcus aureus called protein A (SpA) was

published, unveiling five highly homologous domains A−E that encompassed 58 amino acid residues each . These

domains lacked cysteines and have been found to bind to Igs with high affinity . The structural characterization

provided by nuclear magnetic resonance revealed a simple bundle of three α-helices .

The SpA protein represents the precursor of affibodies, a new class of small, high-affinity Igs-binding proteins. The first

affibody, named Z-domain, has been realized by mutating key amino acids of the SpA B-domain resulting in enhanced

chemical stability and preserving the binding affinity. Furthermore, it showed enhanced resistance against low pH  and

the typical native three-helix bundle  (Figure 1a). The Z-domain is a 58 amino acid molecule with an approximately

6.5 kDa molecular weight. It has been used to generate all known affibody libraries by combined mutations able to interact

with various molecular targets. Examples of targets are Taq DNA polymerase, human insulin, and human apolipoprotein,

showing K  affinities in the µM range . Moreover, affibodies targeting the epidermal growth factor receptor 2 (HER2),

tumor necrosis factor α (TNFα), insulin and the platelet-derived growth factor receptor (PDGFR), and showing very high

melting temperatures and K  down to pM and fM were also realized . Furthermore, other biochemical and

biophysical aspects, such as the folding kinetics of the three-helix bundle, have been improved , thus contributing to

enhance their properties.

Figure 1. (a) Nuclear magnetic resonance structure of a Z affibody (PDB 2KZJ) . (b) Crystal structure of a DARPin

(2QYJ) . Images obtained with ChimeraX v1.4.

As a result, modern Z affibodies are small 58 amino acid polypeptides lacking cysteines and capable of rapid folding,

which show high affinity for several molecular partners. Moreover, they can be easily engineered and expressed as

soluble and proteolytically stable molecules in various host cells on their own or fused with other partners. These

properties contributed to increasing the interest in affibodies for practical purposes, making them more appealing than

Abs.

2.2. DARPins

Ankirin repeats (ARs) were discovered in the cell cycle regulators Swi6 from Saccharomyces cerevisiae and the cell

division control protein Cdc10 and Notch from Drosophila melanogaster . Since this discovery, ARs have been found in

many eukaryotic proteins, becoming one of the most abundant repeat domains in the eukaryotic proteome alongside other

repeats, i.e., leucine-rich repeats (LRR), armadillo repeats (ARM), and tetratricopeptide repeats (TPR). It is not surprising

that more than 367,000 predicted AR domains have been found. Proteins with AR repeats show tightly packed tandem

sequences of 4 to 6 repeats, which usually encompass 33 amino acids each. The repeats form a structural unit consisting

of a β-turn followed by two antiparallel α-helices resulting in a typical helix−loop−helix−β-hairpin/loop structure. Short

interdomain interactions stabilize a particular right-handed solenoid-like fold rather than a globular shape .
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Similar to the original B-domain used to produce affibodies, the AR scaffold has been exploited to identify and randomize

amino acids to manipulate the recognition properties, thus obtaining libraries of DARPins with an incredibly high yield of

production (200 mg per liter of bacterial culture) and thermal stability . Next-generation DARPins have been then

produced by introducing a continuous convex paratope similar to the long CDR-H3 loop found in Igs without altering the

biophysical properties of the original scaffold (Figure 1b). The resulting DARPins showed extended epitope-binding

properties with affinity down to the pM range toward several targets, including human Igs, TNFα, the epidermal growth

factor receptor (EGFR), and HER2 . Further studies revealed that single point mutations strongly increased the

thermal stability of these proteins up to melting temperatures of 90 °C .

Modern DARPins can recognize targets with specificities and affinities equal to or greater than Abs, disclosing a multitude

of practical applications, including cancer therapies . Furthermore, they can be produced with high yield through

common bacterial expression systems, reaching high concentrations without aggregating, and show length-dependent

stability against boiling and chemical denaturation.

3. Affibody- and DARPin-Conjugated Nanomaterials in Cancer Therapy

A brief description is recalled herein, and a comprehensive overview is provided in Table 1, describing main properties in

terms of constitutive matter, shape, and conjugation strategy.

Table 1. Main features of the affibody- and DARPin-conjugated nanomaterials cited here.

Inorganic Nanomaterials

Material Synthesis Shape Size Bioconjugation Strategy Reference

Ag
Biological

synthesis
Particle 35 nm

Crosslinking with

EDC/NHS

Au
Chemical

synthesis
Rod

50 × 8

nm

Crosslinking with 2-

iminothiolane

hydrochloride and sulfo-

EMCS

Ag
Chemical

synthesis
Particle

120

nm

Crosslinking with sulfo-

SMCC or EDAC/NHS

Au
Chemical

synthesis
Particle

31–39

nm

Crosslinking with sulfo-

EMCS

Nd, Yb and Tm
Chemical

synthesis
Particle 18 nm

Crosslinking with NHS-

PEG-azide

Pb, S
Chemical

synthesis
Dot 5 nm

Crosslinking with

EDC/NHS

Fe O , Fe S
Biological

synthesis
Particle

30–

120

nm

Crosslinking with SPDP

Organic Nanomaterials

Material Synthesis Shape Size Bioconjugation Strategy Reference
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Inorganic Nanomaterials

Material Synthesis Shape Size Bioconjugation Strategy Reference

PLGA
Chemical

synthesis
Particle

120

nm

Crosslinking with

EDC/NHS

RALA
Biological

synthesis
Particle

104.5

nm
Fusion synthesis

MMAE
Chemical

synthesis
Micelle

153

nm

Crosslinking with valine-

citrulline dipeptide and

PABC spacer

MMAE
Chemical

synthesis
Micelle

130

nm

Crosslinking with valine-

citrulline dipeptide and

PABC spacer

PLGA
Chemical

synthesis
Particle

218

nm

Fusion synthesis; protein-

protein high affinity

interaction

PLGA
Chemical

synthesis
Particle

140

nm

Fusion synthesis;

crosslinking with

EDC/NHS

Hybrid Nanomaterials

Material Synthesis Shape Size Bioconjugation Strategy Reference

PDA, MnO
Chemical

synthesis
Particle

163

nm

Fusion synthesis;

crosslinking with Michael

addition/Schiff base

reaction

CaCO , Fe O , polyarginine,

dextran sulfate

Chemical

synthesis
Particle

400

nm

Crosslinking with

EDC/NHS

Biological Nanomaterials

Material Synthesis Shape Size Bioconjugation Strategy Reference

Hydrogenated soybean

phosphatidylcholine, cholesterol

and mPEG 2000-DSPE

Chemical

synthesis
Micelle

110–

137

nm

Crosslinking with

maleimide-PEG DSPE

Hydrogenated soybean

phosphatidylcholine, cholesterol,

and mPEG 2000-DSPE

Chemical

synthesis
Micelle

140

nm

Crosslinking with

maleimide-PEG DSPE
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Inorganic Nanomaterials

Material Synthesis Shape Size Bioconjugation Strategy Reference

L-α-phosphatidylcholine and

phosphatidylethanolamine

Chemical

synthesis
Micelle

117

nm

Crosslinking with 2-

iminothiolane

hydrochloride and sulfo-

EMCS

AaLS protein
Biological

synthesis
Particle 40 nm

Crosslinking through

spontaneous ST-SC

isopeptide covalent bond

DNA
Chemical

synthesis
Tetrahedron 23 nm Crosslinking with EMCS

DNA
Chemical

synthesis
Micelle

132

nm
Crosslinking with EMCS

 Average size.
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