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Seaweeds are a potential source of bioactive compounds that are useful for biotechnological applications and can be

employed in different industrial areas in order to replace synthetic compounds with components of natural origin. Diverse

studies demonstrate that there is a solid ground for the exploitation of seaweed bioactive compounds in order to prevent

illness and to ensure a better and healthier lifestyle. Among the bioactive algal molecules, phenolic compounds are

produced as secondary metabolites with beneficial effects on plants, and also on human beings and animals, due to their

inherent bioactive properties, which exert antioxidant, antiviral, and antimicrobial activities. 
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1. Seaweed Phenolic Compounds

Seaweed phenolic compounds are attracting the attention of the scientific community, as well as several industries, due to

their high variety and potential uses . For instance, the occurrence of phlorotannins (in brown seaweeds) and

bromophenols, flavonoids, phenolic terpenoids, and mycosporine-like amino acids (MAAs) in green and red seaweeds

has been recorded (Table 1) .

Phenolic acids consist of a single phenol ring and at least a group of functional carboxylic acids and are typically graded

according to the number or the amount of carbon in the chain bound to the phenolic ring. These phenolic acids are also

categorized as C6-C1 for hydroxybenzoic acid (HBA; one carbon chain linked to the phenolic ring), C6-C2 for

acetophenones and phenylacetic acids (two carbon chains linked to the phenolic ring) and C6-C3 (3 carbon chains

attached to the phenol ring) for hydroxycinnamic acid (HCA) . HBAs include, among others, gallic acid, p-

hydroxybenzoic acid, vanillic acid, syringic acid, and protocatechins, in which there are differences in the basic structure

of the HBA, including an aromatic ring hydroxylation and methoxylation .

Trans-phenyl-3-propenoic acids are hydroxycinnamic acids (HCA), which vary in their ring constitution . These HCA

derivatives include caffeic (3,4-dihydroxycinnamic), ferulic (3-methoxy-4-hydroxy), sinapic (3,5-dimethoxy-4-hydroxy), and

p-coumaric (4-hydroxy) acids, all of which are commonly distributed as conjugates, primarily as quinic acid esters

(chlorogenic acids) . In addition, these acids can be subcategorized up into different groups based on the identity,

location, and number of the acyl residue: (1) mono-esters of caffeic, ferulic, and p-coumaric acids; (2) bi-, tri-, and tetra-

esters of caffeic acids; (3) mixed di-esters of caffeic-ferulic acid or caffeic-sinapic acids; and (4) mixed caffeic acid esters

with aliphatic dibasic acids, such as oxalic or succinic acid .

Some experiments have shown the presence of phenolic acids in marine algae . For instance, coumarins have been

found in green seaweed species such as Dasycladus vermicularis, as well as some vanillic acid derivatives in the

Cladophora socialis (Chlorophyta, green algae) . Ascophyllum nodosum (Figure 1A), Bifurcaria bifurcata (Figure 1B),

and Fucus vesiculosus (Figure 1C) (Phaeophyceae, brown algae) have been distinguished by the presence of HBAs,

rosmarinic acid, and quinic acid . In addition, in the genus Gracilaria (Figure 1I) (Rhodophyta, red alga), phenolic acids

have been detected, such as benzoic acid, p-hydroxybenzoic acid, salicylic acid, gentisic acid, protocatechuic acid,

vanillic acid, gallic acid, and syringic acid .
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Figure 1. Some seaweeds producing phenolic compounds: (A)—Ascophyllum nodosum (P); (B)—Bifurcaria bifurcata (P);

(C)—Fucus vesiculosus (P); (D)—Leathesia marina (P); (E)—Lobophora variegata (P); (F)—Macrocystis pyrifera (P); (G)

—Asparagopsis armata (R); (H)—Chondrus crispus (R); (I)—Gracilaria sp. (R); (J)—Kappaphycus alvarezii (R); (K)—

Neopyropia sp. (R); (L)—Palmaria palmata (R); (M)—Dasycladus vermicularis (Chl); (N)—Derbesia tenuissima (Chl); (O)

—Ulva intestinalis (Chl); P—Phaeophyceae, R—Rhodophyta; Chl—Chlorophyta.

Phlorotannins are well-known phenolic compounds synthesized by brown seaweeds. These compounds are constituted

by oligomeric units of phloroglucinol . Commonly, these secondary metabolites have a molecular weight ranging

from 10 to 100 kDa, due to the high variability that these molecules can present in the structural bonds between

phloroglucinol and the hydroxyl groups . In this context, phlorotannins can be categorized into six categories: (1)

fucols (aryl–aryl bonds), (2) phloretols (aryl–ether bonds), (3) eckols (dibenzo-1,4-dioxin bonds), (4) fucophloretols (ether

or phenyl linage), (5) carmalols (dibenzodioxin moiety), and (6) fuhalols (ortho-/para- arranged ether bridges containing an

additional hydroxyl group on one unit) . Moreover, the complexity of these molecules classify them, by each

category, into linear or branched phlorotannins . Due to its biotechnological properties, dieckol is the most exploited

phlorotannin, and it can be found in the species Ecklonia cava (Phaeophyceae) .

Flavonoids are structurally characterized as phenolic compounds with a heterocyclic oxygen bound to two aromatic rings,

which can then differ according to the degree of hydrogenation . However, there is a generalized lack of studies

regarding algal flavonoids’ isolation and characterization. Nevertheless, some research has shown that seaweeds are a

rich source of flavonoids. Several species of the Chlorophyta, Rhodophyta phyla, and Phaeophyceae class were found to

have flavonoids such as rutin, quercitin, and hesperidin . For instance, Chondrus crispus (Figure 1H) and

Porphyra/Pyropia spp. (Rhodophyta) and Sargassum muticum and Sargassum vulgare (Phaeophyceae) can synthesize

isoflavones, likewise daidzein or genistein . Moreover, many flavonoid glycosides have also been recorded in the

brown seaweeds Durvillaea antarctica, Lessonia spicata, and Macrocystis pyrifera (also known as Macrocystis integrifolia)

(Figure 1F) . Furthermore, green (Acetabularia ryukyuensis), brown (Eisenia bicyclis—as Ecklonia bicyclis, Padina
arborescens, Padina minor), and red seaweeds (Neopyropia yezoensis—also known as Porphyra yezoensis—Figure 1K,

Gelidium elegans, and Portieria hornemannii—also known as Chondrococcus hornemannii) proved to be a valuable

source of catechin, epicatechin, epigallocatechin, catechin gallate, epicatechin gallate, or epigallocatechin gallate .

Bromophenols are brominated phenolic compounds characterized by the presence of one or more benzene rings and

hydroxyl substituents . These compounds can be found in green , red  and brown seaweeds 

. Nevertheless, red seaweeds often exhibit a higher content of these molecules . However, due to the low content of

bromophenols in seaweeds, there are just a few studies regarding the isolation and characterization of these compounds.
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Phenolic terpenoids are secondary metabolites that have already been identified in seaweeds . For instance,

meroditerpenoids (such as plastoquinones, chromanols, and chromenes) were found in brown seaweeds, mainly from the

family Sargassaceae (Phaeophyceae). These compounds are partially derived from terpenoids and are characterized for

having a polyprenyl chain linked to a hydroquinone ring moiety . Red seaweeds also synthesize phenolic terpenoids,

such as diterpenes and sesquiterpenes in Rhodomelaceae. For example, the species Callophycus serratus synthesizes a

specific diterpene, bromophycolide .

Table 1. Seaweed phenolic compounds recorded, according to phyla and phenolic compound group.

Seaweed Species
Phenolic
Compound
Group

Compound Reference

Chlorophyta  

Acetabularia ryukyuensis
Dasycladus vermicularis Flavonoids

Catechin, epicatechin, epigallocatechin, catechin gallate,
epicatechin gallate, or epigallocatechin gallate

Coumarin

Dasycladus vermicularis
Cladophora socialis

Nitella hookeri

Phenolic acids
Flavonoids

Coumarin
Vanillic acid
C-glycosides

Rhodophyta  

Gracilaria sp. Phenolic acids
Benzoic acid, p-hydroxybenzoic acid, salicylic acid, gentisic

acid, protocatechuic acid, vanillic acid, gallic acid, and
syringic acid

Chondrus crispus

Flavonoids

Isoflavones; daidzein or genistein

Porphyra/Pyropia spp. Isoflavones; daidzein or genistein

Neopyropia yezoensis (as
Porphyra yezoensis)

Catechin, epicatechin, epigallocatechin, catechin gallate,
epicatechin gallate, or epigallocatechin gallate

Gelidium elegans

Portieria hornemannii (as
Chondrococcus

hornemannii)

Callophycus serratus Phenolic
terpenoids Bromophycolides

Palmaria palmata

Mycosporine-like
amino acids

Palythine, shinorine, asterina-330, palythinol, and porphyra-
334

Falkenbergia rufolanosa
(tetrasporophyte phase of

Asparagopsis armata)
Palythine and shinorine

Ochrophyta, Phaeophyceae  

Ascophyllum nodosum

Phenolic acids Rosmarinic acid; quinic acidBifurcaria bifurcata

Fucus vesiculosus

Ecklonia cava
Cystoseira sp.
Fucus spiralis

Ishige okamurae
Ascophyllum nodosum

Bifurcaria bifurcata

Phlorotannins

Dieckol
Eckol

Fucophloroethol-type
Diphlorethohydroxycarmalol

Fucaphlorethol-type
Tetrafuhalol B
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Seaweed Species
Phenolic
Compound
Group

Compound Reference

Durvillaea antarctica

Flavonoids

C-glycosidesLessonia spicata

Macrocystis pyrifera (as
Macrocystis integrifolia)

Eisenia bicyclis (as Ecklonia
bicyclis)

Padina arborescens
Padina minor

Catechin, epicatechin, epigallocatechin, catechin gallate,
epicatechin gallate, or epigallocatechin gallate

Sargassum muticum
Daidzein or genistein

Sargassum vulgare

Sargassaceae

Phenolic
terpenoids

Plastoquinones, chromanols, and chromenes

Stypopodium zonale

Stypofuranlactone; 10,18-dihydroxy-5′a-desmethyl-5′-
acetylatomaric acid; 10-keto-10-deisopropyliden-5′a-

desmethyl-5′-acetylatomaric acid; 10-keto-10-
deisopropyliden-atomaric acid

 

Mycosporine-like amino acids (MAAs) are secondary metabolites that, despite being synthesized by several organisms,

were found to be more often produced by marine organisms . Such compounds present a low molecular weight

(<400 kDa) and are soluble in water. Moreover, they present a cyclohexanone or cyclohexenine ring, with amino acid

moieties in their chemical structure . Thus, these compounds can be found mainly in red seaweeds. For example, it

was found that the edible red seaweed Palmaria palmata (Figure 1L) biosynthesizes the MAA palythine, shinorine,

asterina-330, palythinol, and porphyra-334 . In addition, the tetrasporophyte phase of Asparagopsis armata (Figure 1G)

was found to produce palythine and shinorine .

 

2. Phenolic Compounds Application in Biotechnology

Biological compounds extracted from seaweeds exert several activities that can be exploited for the production of food,

animal feed, and new drugs, substituting synthetic compounds with natural-origin compounds.

The most exploited phenolic compounds are phlorotannins, which are exclusively present in high concentration in brown

seaweeds  and are involved in defense activities , showing strong antioxidant properties and antimicrobial

activity, which help to inhibit bacterial growth . Phlorotannins can be exploited in different biotechnological sectors.

They exert a powerful antioxidant activity, as in the case of phlorotannins extracted from Sirophysalis trinodis (formerly

known as Cystoseira trinodis, Phaeophyceae), which makes considering this species a potential source of phenolic

compounds for diverse applications .

The synthesis of these compounds is driven by different factors. For example, seaweeds are particularly sensitive to

external stressors; consequentially, they produce phenolic compounds, which develop multiple activities in order to protect

seaweeds . Due to several biological activities that involve phenolic compounds, they have been found

interesting to be applied in the nutraceutical, pharmaceutical, medical, and industrial areas .

2.1. Medical and Pharmaceutical Applications

The consumption of seaweeds can prevent diseases or help the healing. Their bioactive compounds have positive effects

on human health. For example, Tanniou et al.  identified the brown alga Sargassum muticum as a potential source of

bioactive phenolic compounds: this species showed a strong antioxidant activity  and anti-proliferative activity in breast

cancer cells  that may suggest the involvement of S. muticum in biotechnological applications.

Shibata et al.  compared the antioxidant activity of phlorotannins extracted from Eisenia bicyclis (Phaeophyceae) in

vitro to available and active compounds such as vitamin C (ascorbic acid) and vitamin E (α-tocopherol). This study

demonstrates that the antioxidant activity of phlorotannin was 10 times higher than that of other biological compounds.
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The isolation and studies on phlorotannin derivates demonstrate that their high anti-proliferation activity is able to induce

growth inhibition and apoptosis in human breast cancer cells . For example, the red seaweed Kappaphycus alvarezii
(also known as Eucheuma cottonii) (Figure 1J) polyphenol in vitro extracts were analyzed to evaluate antiproliferative,

apoptotic, and cell cycle effects. Results showed an effect of these compounds against cancer cells .

The uptake of phlorotannins has also been related to the reduction in cardiovascular diseases and hypercholesterolemia

.

Phlorotannins are responsible for the absorption of UV-B radiation , acting as photoprotective agent for algal

cells , to avoid DNA damage . This property is also effective for human and animal skin, reducing the

probability of skin cancer due to UV-B radiation . Additionally, phlorotannins prevent the production of matrix

metalloproteinases (MMPs), enzymes that encourage the presence of wrinkles by degrading the extracellular matrix. For

this purpose, seaweed phenolic compounds may be involved in the production of anti-aging creams and skin products .

Phlorotannins are also involved in the development of therapies to treat diverse allergic diseases. In Korean traditional

medicine, phlorotannin extracts from the brown alga Sargassum hemiphyllum and the red alga Polyopes affinis (formerly

known as Carpopeltis affinis) have been confirmed to have effective antiallergic properties in vitro . The Japanese

brown alga Ecklonia arborea (formerly known as Eisenia arborea) has been found to contain effective inhibitors of

histamine; the presence of phlorofucofuroeckol B (phlorotannin) may be the reason for the anti-allergic activity shown in

rats. Ecklonia arborea is popular in Japan since it has been consumed for years as healthy food and folkloristic therapies

.

Among phenolic compounds, bromophenol and its derivates are widely investigated due to their potential activities.

Studies conducted with Leathesia marina (formerly known as Leathesia nana) (Figure 1D) (Phaeophyceae) indicate that

bromophenol derivatives respond positively to the inhibition of human cancer cells proliferation in vitro . Alongside the

ideal exploitation of bromophenol derivates for the development of new therapies for tumor treatment, these biological

compounds reported antiviral activity against Herpes Simplex Viruses-1. For instance, extracts from the red alga

Symphyocladia latiuscula (Figure 1N), which is abundant in Korea, demonstrate antiviral activity against HSV-1, likely due

to the presence of its bromophenols, the major compounds .

Moreover, researchers have proven the antimicrobial effect of bromophenols extracted from the red alga Rhodomela
confervoides, which act against some Staphylococcus and Pseudomonas aeruginosa strains .

Advantages of Phenolic Compounds Consumption for Human Health

Benefits of phenolic compounds are very common in human diet, since they can be ingested as food or food supplements

and provide the human organisms with multiple positive effects . They can be found in food and beverages from natural

origin such as plants, seaweeds, fruits, coffee, black tea, and chocolate , but they can be also added to our daily diet

as colorants or as antioxidants .

Many synthetic antioxidants have been developed to retard the oxidation in foods. However, synthetic compounds may

have collateral effects  that could be avoided by the intake of natural antioxidant compounds, such as phenolic

compounds extracted from seaweeds . Phenolic acids present in food are also responsible for organoleptic properties,

influencing color, flavor, and nutritional values .

Brown algae have already been exploited as food in Asia in the past 15 centuries; phlorotannin extracts from Ecklonia
cava are already available in the market since 2018, when the European Food Safety Authority (EFSA) Panel on Dietetic

Products, Nutrition and Allergies (NDA) attested that these extracts are indicated for diet due to their nutritional properties.

Ecklonia cava thallus is consumed as salad and as a component of soups, while E. cava powder is also used to dye food,

especially sweets, such as candies or rice cakes .

Phlorotannins have anti-diabetic effects: Roy et al.  assessed the in vitro inhibitory activity of phlorotannins extracted

from Ascophyllum nodosum and Fucus vesiculosus, and their effect on rat blood glucose and insulin levels. It has been

noticed that, 20 min after the consumption of animal feed enriched in phlorotannins, the normal increase in postprandial

blood glucose was reduced by 90%, with a consequential reduction by 40% of insulin secretion .

As different classes of polyphenols from seaweeds can assure health benefits, it is suggested to consume the whole

algae in order to uptake a higher quantity of bioactive compounds, instead of consuming only algae extracts as food

supplements .

Flavonoids have been investigated for a long time for their powerful antioxidant activities. Their uptake has been linked

with a reduced risk of lung cancer .

[65][66]

[67]

[68][69]

[70][71][72][73]

[3][74] [75][76][77]

[71]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85][86]

[87]

[88]

[89]

[90]

[91]

[92]

[92]

[93]

[84]



2.2. Aquaculture and Industrial Applications

Bromophenols are also investigated for the flavor they give to seafood . Studies attested that bromophenols are

responsible for the typical iodine-like flavor of marine fish , prawns, and marine algae . It is quite likely that

bromophenols detected in marine fish and prawns derived from their diet based on seaweeds that can synthesize these

compounds .

The Japanese brown algae Padina spp., Sargassum spp., and Lobophora spp. (Figure 1E) have been detected as

sources of bromophenols for local fish. It is likely that fish assimilate the typical marine flavor after the ingestion of these

algae .

The presence of bromophenols in the diet of prawns may be useful for aquaculture : crustaceans used as fish feed

in aquaculture systems have low amounts of bromophenols due to their diet, with a consequential absence of iodine-like

flavor in farmed fish . The inclusion of seaweeds in prawns feed may thus increase the sea-like flavor of aquaculture

seafood, enhancing their taste 

Moreover, other compounds, such as flavonoids, play an important role in retarding lipid oxidation that occurs in muscle,

especially in fish, in order to delay the deterioration of seafood .

Over the last years, textile industries dedicated more attention towards medical textiles since their usage is not restricted

to medical centers and care facilities: it is also present in other fields where hygienic conditions are required, e.g., hotels

or restaurants . Natural fibers such as cotton or silk are limited; therefore, medical textile industries started to use

synthetic fibers, such as polyester, viscose, polyamides, and polypropylene . A critical problem with synthetic fibers is

the risk of spreading infections. To overcome this problem, seaweeds’ bio-compounds may be utilized for textile

production. Due to the properties of phenolic compounds, new biological textiles may be developed. The new textiles

could have antioxidant and antimicrobial properties  with the advantage of being natural and not irritating to the skin

and being biodegradable and biocompatible . The natural bioactive agents are non-toxic and skin and eco-friendly.

From the extraction and treatment of cellulose-based polyphenols, these textiles can be brought into contact with the

human skin and tissues and body fluids .

Moreover, the use of flavonoids to obtain UV-protective clothing has been suggested, since they show UV protection

ability linked with antibacterial and anti-inflammatory properties .
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