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Classical univariate and multivariate statistics are the most common methods used for data analysis in plant

breeding and biotechnology studies. Evaluation of genetic diversity, classification of plant genotypes, analysis of

yield components, yield stability analysis, assessment of biotic and abiotic stresses, prediction of parental

combinations in hybrid breeding programs, and analysis of in vitro-based biotechnological experiments are mainly

performed by classical statistical methods. Despite successful applications, these classical statistical methods have

low efficiency in analyzing data obtained from plant studies, as the genotype, environment, and their interaction (G

× E) result in nondeterministic and nonlinear nature of plant characteristics. Large-scale data flow, including

phenomics, metabolomics, genomics, and big data, must be analyzed for efficient interpretation of results affected

by G × E. Nonlinear nonparametric machine learning techniques are more efficient than classical statistical models

in handling large amounts of complex and nondeterministic information with "multiple-independent variables versus

multiple-dependent variables" nature. Neural networks, partial least square regression, random forest, and support

vector machines are some of the most fascinating machine learning models that have been widely applied to

analyze nonlinear and complex data in both classical plant breeding and in vitro-based biotechnological studies.

High interpretive power of machine learning algorithms has made them popular in the analysis of plant complex

multifactorial characteristics. The classification of different plant genotypes with morphological and molecular

markers, modeling and predicting important quantitative characteristics of plants, the interpretation of complex and

nonlinear relationships of plant characteristics, and predicting and optimizing of in vitro breeding methods are the

examples of applications of machine learning in conventional plant breeding and in vitro-based biotechnological

studies. Precision agriculture is possible through accurate measurement of plant characteristics using imaging

techniques and then efficient analysis of reliable extracted data using machine learning algorithms. Perfect

interpretation of high-throughput phenotyping data is applicable through coupled machine learning-image

processing.

This entry shows how nonlinear machine learning algorithms can be used in different branches of classical plant

breeding and in vitro-based methods. An idea is provided at the end of the entry that shows how coupled image

processing-machine learning (especially deep CNN) could be used to identify the ploidy level of plants. It could be

used in laboratories without flowcytometry equipment and/or in plant species without an established chromosome

counting protocol.

artificial neural networks  big data  high-throughput phenotyping

1. Introduction 
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Due to climate change (global warming), increasing food requirements and depletion of resources in consequence

of increasing global population, it is necessary to use modern technologies in agriculture and food sciences .

Plant breeding is a dynamic branch of agricultural science. It started with simple selection of impressive plants with

superior characteristics. Later, genetics and statistics were involved in classical plant breeding, mainly after the

discoveries of Gregor Mendel and Sir Ronald Aylmer Fisher. Next, modern plant breeding emerged with the

advancements in genetic and biotechnology approaches. Classical plant breeding methods mainly included

assessment and classification of genetic diversity, yield components analysis (indirect selection of superior

genotypes with impressive economic characteristics), yield stability analysis (genotype × environment interaction),

enhanced tolerance to biotic and abiotic stresses, and hybrid breeding programs. In vitro-based biotechnological

breeding methods mainly included in vitro micropropagation, doubled haploid production, artificial polyploidy

induction, and Agrobacterium-mediated gene transformation. In in vitro micropropagation studies, researchers want

to investigate the effects of influential factors (inputs), such as combination of culture medium components,

combination and concentrations of plant growth regulators (PGRs), and interactions of plant genotype × culture

medium × PGRs × explant type × explant age × elicitor additives × type and concentration of carbohydrate source

× etc., on regeneration efficiency (outputs) of their desired plants. Classical statistical techniques have been

employed to analyze and interpret the results of both classical and in vitro-based plant breeding studies. These

analytical techniques are mainly based on variance and linear regression models to assess the relationship of

variables and predict the effect of independent variables on dependent variables. One regression model is required

to assess the effect of a group of independent variables (X1, X2, X3, …, Xn) on one dependent variable (Y),

according to the multiple linear relationships . However, nonlinear and nondeterministic properties are inextricably

linked with plant biological systems . Therefore, despite of successful applications, the classical linear regression-

based models are unable to interpret highly nonlinear and complex relationships between dependent and

independent variables. Most of these plant breeding approaches are “multiple-independent variables versus

multiple-dependent variables.” Under these conditions, one regression model is required for each output .

Powerful data mining tools are employed in plant breeding studies to predict and explain complex data.

Machine learning—the science of programming computers so they can learn from data—has been widely applied

in both classical and in vitro-based plant breeding studies to interpret the flow of information about plants from the

DNA sequence to the observed phenotypes. There are three ways to classify machine learning methods, including

supervised and supervised models, linear and nonlinear algorithms, and shallow and deep learning models (Figure

1). Artificial neural networks (ANNs), deep neural networks (DNNs), convolutional neural networks (CNNs), random

forest (RF), and support vector machines (SVMs) are examples of nonlinear nonparametric machine learning

algorithms, applied for processing nonlinear data in plant studies . These data-driven models are able to parse

and interpret non-normal, nonlinear, and nondeterministic unpredictable data sets, through the full use of all

spectral data and avoid irrelevant spectral bands and multicollinearity . Among different learning algorithms,

including supervised, unsupervised, reinforcement, sparse dictionary, and rule-based, supervised learning is more

suitable and efficient for life science problems . Supervised learning can be used for classification (predicting

non-numeric answers) and regression (predicting numeric answers) . Formless datasets such as data obtained

by photo imaging or sequencing can be interpreted through machine learning algorithms . Genome sequencing
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data can be used in machine learning models for the identification and classification of transposable elements .

By using machine learning algorithms, breeders are able to predict multiple outputs (multiple-dependent variables)

through different combinations of multiple inputs in one model and reduce required analyses.

Figure 1. Different categories of machine learning algorithms.

Artificial neural networks, consist of an input, an output, and several hidden layers, are nonlinear nonparametric

models which do not require a prior structure for data and detailed information about the physical processes to be

modeled and to tolerate data loss . Because of their more hidden layers, DNNs have greater predictive power

than ANNs. Convolutional neural networks, as state-of-the-art deep learning architecture, are inspired by the

natural visual perception mechanism of the living creatures and consist of convolutional, pooling, fully-connected

layers, and an output layer . CNNs are suitable for classification studies because of automatic feature extraction

. Image classification, object detection, object tracking, pose estimation, text detection and recognition, visual

saliency detection, action recognition, scene labeling, speech, and natural language processing are some of the

typical applications of CNNs . Neural networks have low interpretability of the features (lack the interpretation

capability), especially CNN in which the features extracted are hidden. More advanced machine learning technique

of SVMs, which uses a supervised learning algorithm to find both linear and nonlinear relationships in data, can be
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used for clustering, classification, and regression analysis of data sets. In comparison with multilayer perceptron

(MLP) of ANN, SVM uses a large number of hidden units and has better performance in the formulation of the

learning problem, subsequently quadratic optimization task . Random forest regression is a regression tree-

based machine learning that uses multiple decision trees to classify data and needs setting the number of trees,

the number of random features, and the stop criteria for training. RF is more suitable for spectral data analysis and

overfitting can be controlled through combining different independent predictors . In semantic segmentation

methods, such as automated phenotyping and plant disease detection, deep learning CNN can be more effective

than shallow learning models of SVMs and RF and problem of required large manually crafted features can be

solved by using image augmentation and small manually annotated empirical dataset for fine-tuning a synthetically

bootstrapped CNN . Through the integrating image feature extraction with classification in a single pipeline,

deep convolutional neural networks have been considered as mainstream in biotic and abiotic stress diagnosis and

classification . A nine-layer deep CNN model was trained for identification of plant leaf diseases using data set

with 39 different classes of plant leaves and background images and 96.46% classification accuracy was reported,

which is greater than traditional machine learning approaches of SVM, decision tree, logistic regression, and K-NN

. CNNs are also applicable in remote sensing for object detection and pattern recognition. High accuracy (84%)

for fine-grained mapping of vegetation species and communities using deep CNN-based segmentation, trained by

data directly derived from visual interpretation of unmanned aerial vehicles (UAV)-based high-resolution Red-

Green-Blue (RGB) imagery, has been reported .

A lot of training data is required in ANN for the optimization of sigmoid functions belonging to the hidden layer’s

neurons, as overfitting and local minima may happen by small number of training data. Therefore, the optimization

process cannot be properly carried using back-propagation algorithms, when the number of training samples is

small . Through the short review on studies that used SVM and ANN techniques for identifying disease in plants,

it was concluded that the ANN-based methods are better than SVM-based methods, as few samples and features

are used in SVM-based methods to identify the disease-affected plants . Conversely, in modeling in vitro culture

of Chrysanthemum (Dendranthema × grandiflorum), better performance accuracy of SVR (R  > 0.92) than MLP (R

> 0.82) has been reported . Applying different algorithm and comparing their performance is an appropriate

solution to find the best algorithm in a particular data set. In tea plant (Camellia sinensis L.), partial least squares

discriminative analysis (PLS-DA) and least squares-support vector machines (LS-SVM) were used for the

classification of different nitrogen nutrition status under field condition and better performance with correct

classification of LS-SVM than PLS-DA was reported .

Different application areas for nonlinear machine learning technologies in classical and in vitro-based plant

breeding studies are shown in Figure 2. The following sections of the article provide a comprehensive review of the

applications of these nonlinear machine learning techniques in classical and in vitro-based plant breeding studies.
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Figure 2. Potential applications of machine learning techniques in classical and modern plant breeding.

2. Applications of Machine Learning in In Vitro-Based Plant
Biotechnology

Biotechnology-based breeding methods (BBBMs) complement classical breeding methods in rapid plant

improvement. In vitro regeneration, as the main core of many in-vitro-based breeding methods, has numerous

plant breeding applications. In situ and ex situ conservation and micropropagation (proliferation) are direct

applications of in vitro regeneration . In endangered rare plant species, like medicinal plants, in vitro culture is an

effective strategy for mass propagation, germplasm conservation, and production of bioactive compounds .

Several factors determine the fate of cultured cells in in vitro regeneration of plants. These are the plant genotype,

plant growth regulators (PGRs), culture medium components, explant type, explant age, enhancer additives-

elicitors, etc. . These factors can be divided into three main categories: initial triggers of regeneration

(environmental signal inputs and physical stimuli), epigenetic and transcriptional cellular responses to the initial

triggers, and molecules that manage the formation and development of the new stem cell niche . The

combination and interactions between these factors lead to multifactorial nature of the in vitro plant regeneration

process. Basal culture medium components, plant genotype, PGRs, explant type, and explant age are all multilevel

factors with different applicable combinations. The inclusion of other factors results in a very complex situation for

interpretation. Plant cells and tissues have nondeterministic and nonlinear developmental patterns in a stressful in

vitro environment . The analysis of variance of factorial experiments and simple means comparison analysis with

classical methods such as LSD, Tukey’s HSD, and Duncan’s test, are the main statistical methods used to interpret

the effects of interaction between effective factors in most in vitro regeneration studies .
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Murashige and Skoog (MS), modified MS (MMS), Gamborg’s B5 medium Woody Plant Medium (WPM), and Driver

and Kuniyuki Woody Plant Medium (DKW) are the most commonly used basal culture media in in vitro

regeneration studies. Basal medium manipulation is a promoting strategy that has been applied to increase the

output of in vitro studies . However, due to the large number of micro- and macroelements in the culture

medium, it is difficult to manipulate their concentrations. In this situation, prediction of the effect of culture media

components on the target characteristics of in vitro regenerants is the right solution. Artificial neural networks have

been applied in these experiments to predict the best culture media components for efficient propagation of

different plant species .

Different combinations of auxin and cytokinin PGRs can determine the developmental fate of cultured cells and

tissues toward organogenesis and/or somatic embryogenesis. The cytokinin/auxin ratio is also very important in in

vitro studies . Niazian et al.  found that 2,4-dichlorophenoxyacetic acid (2,4-D) combined with kinetin resulted

in indirect somatic embryogenesis of cultured hypocotyl segments of ajowan medicinal plants, whereas a

combination of 3-methoxy(-6-benzylamino-9-tetrahydropyran-2-yl) purine and naphthalene acetic acid led

cultivated explants toward an indirect shoot regeneration pathway. Arab et al.  combined artificial neural

networks and genetic algorithms to predict and optimize the effect of cytokinin–auxin plant hormone (BAP, KIN,

TDZ, IBA, and NAA) combinations and concentrations on the number of microshoots per explant, the length of

microshoots, developed callus weight, and the quality index of plantlets in in vitro proliferation of Garnem (G × N15)

rootstock. The ANN model predicted the number and length of microshoots with high accuracy. The highest values

of the variable sensitivity ratio for the proliferation rate were related to the BAP (19.3), KIN (9.64), and IBA (2.63)

inputs. An MLP-ANN was developed to predict the physical properties of embryogenic callus and the number of

somatic embryos in in vitro regeneration of ajowan under the effect of different combinations of the explant age,

concentrations of 2,4-D, kinetin, and sucrose inputs . The ANN model predicted the physical properties of

embryogenic callus (area, perimeter, Feret diameter, roundness, and true density) and the number of somatic

embryos better than the multiple linear regressions. Fifteen-day-old hypocotyl explants × 1.5 mg/L 2,4-D × 0.5

mg/L Kin × 2.5% (w/v) sucrose was the best combination of inputs with the highest measured and predicted

number of somatic embryos .

Apart from culture medium components and PGRs combination, ANN has been applied to model the sterilization

step of in vitro regeneration. Hesami et al.  applied an MLP-ANN along with a genetic algorithm to model and

optimize the contamination frequency and explant viability under the influence of seven input variables, i.e., HgCl ,

Ca(ClO) , nanosilver, H O , NaOCl, AgNO , and immersion times, in an in vitro culture of chrysanthemum. The

lowest contamination frequency (0%) and the highest explant viability (99.98%) resulted from 1.62% NaOCl at

13.96 min immersion time. The sensitivity analysis of the ANN showed that the immersion time was the most

important variable affecting the contamination frequency and explant viability . ANNs are also used to simulate in

vitro growth of plant tissue cultures, distinguish embryos from nonembryos, predict the formation of plantlets from

embryos, estimate the biomass of cell cultures, simulate the distribution of temperature in a culture vessel, identify

and estimate the in vitro induced shoot length, and cluster in vitro regenerated plantlets .
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Other in vitro-based breeding methods, such as artificial polyploidy induction, doubled haploid production, plant

gene transformation, and genome editing methods also have multifactorial nature and require multivariate

statistical methods to interpret the results. Different chemical enhancers can be used in in vitro doubled haploid

production methods (induced parthenogenesis and androgenesis) to improve the haploid induction efficiency, e.g.,

PGRs, osmoprotectants, cellular antioxidants, reactive oxygen species scavengers, polyamins, stress hormones,

chlormequat chloride, compatible solutes, DNA demethylating agents, histone deacetylase inhibitors, cell wall

remodeling agents, ethylene inhibitors, and other applicable additives. They enhance tolerance to inductive

stresses and improve the final efficiency of doubled haploid production . ANN models may improve the efficiency

of in vitro doubled haploid production and solve the problem of recalcitrant species/genotypes by predicting the

best combination(s) of these additives in interaction with other influencing factors, such as the plant genotype, the

surrounding environment of donor plants, physical treatments (inductive stresses) of cultured gametophytic cells,

the developmental stage of initial gametophytic cells, and culture medium components. The ANN predicted the

callus induction percentage in androgenesis (anther culture) of tomato (Lycopersicon esculentum L.) under the

influence of plant genotype, the concentrations of 2,4-D and kinetin PGRs, and the concentration of gum Arabic

better than the MLR model .

Plants’ vigor and performance are commonly enhanced by mitotic-induced polyploidy. It consists in in vivo and in

vitro application of mitotic spindle poisons . In vitro-induced polyploidy is a multifactorial procedure. The

efficiency of in vitro-induced polyploidy may be affected not only by in vitro regeneration parameters (basal culture

medium components, combination of PGRs, additives, etc.) but also by the plant genotype, the developmental

stage of initial explants as well as the type, dosage, and duration (exposure time) of the application of the

antimitotic agent. Due to the genotype dependency, different genotypes of plant species exhibit different responses

to concentrations of the antimitotic agent applied . This results in significant interaction of the plant genotype and

antimitotic agent in artificial polyploidy induction. Although there have been no reports on the application of ANN to

model and predict the results of in vitro-induced artificial polyploidy, it might increase the efficiency by predicting

and finding the best combination and interaction of all influential factors.

Agrobacterium-mediated gene transformation is a well-known method of plant gene transformation and genetic

engineering. However, various parameters must be optimized for an efficient gene delivery, including the

Agrobacterium strain cell density, the time of inoculation, the type and concentration of antibiotics to kill

Agrobacterium, the type and concentration of selectable antibiotics, and the concentration of acetosyringone .

These influencing factors along with in vitro regeneration factors result in a multi-variable nature of Agrobacterium-

mediated gene transformation . It is obvious that machine learning algorithms could be used to predict and

optimize Agrobacterium-mediated gene transformation, especially in important Agrobacterium-recalcitrant plant

species.

3. Conclusions

Most classical statistical methods use only simple statistics and few influential factors to assess the biological

features of plants. For example, Y  and Y  are the only indices used to identify drought-tolerant plant genotypes in
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yield-based drought tolerance assessment methods. However, there are other influential factors, such as cellular,

physiological, and phytochemical pathways, which are involved in plants’ responses to environmental stress. The

tolerance of different plant species to biotic and abiotic stresses, as complex biological processes, can be

efficiently enhanced through large-scale analysis of phenomic, metabolomic, and genomic data. Machine learning

models are capable of processing large amounts of data (imaging and remote-sensing data) for high-throughput

stress phenotyping. The analysis of different omics and phenomic data may result in more precise interpretation of

GEI and yield stability. Plants’ qualitative and quantitative characteristics can be predicted more precisely by

analysis of climate data (temperature, humidity, sunshine, precipitation, etc.), soil factors, agricultural operations

data (harvest date, information on diseases, crop status, ground temperature, etc.), topographic, and

meteorological data. Big data analysis enables more efficient classification of plants’ phenotypes and genotypes.

Machine learning techniques are able to manage large amounts of data in various areas of plant breeding, which

can lead to more accurate results and better interoperation than classical statistical methods. Artificial neural

networks can be used for pattern recognition, nonlinear regression, and classification purposes in plant tissue

culture studies because they can handle binary, continuous, categorical, and fuzzy datasets. The present review

can give an overview of applications of machine learning to plant breeders. It would be helpful to adopt the correct

method of data analysis in future studies, which in turn can increase the output of studies.
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