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There is a need to update soil maps and monitor soil organic carbon (SOC) in the upper horizons or plough layer

for enabling decision support and land management, while complying with several policies, especially those

favoring soil carbon storage. A number of satellite-based spectral approaches for SOC assessment have been

achieved from several satellite sensors, study scales and geographical contexts in the past decade.

soil organic carbon  spectral models  satellite imagery

1. Satellites Spectral Information

Since 1972, i.e., the very beginning of the civilian satellite remote sensing, until the mid-2010s, satellite data

available in the optical domain were mostly acquired from multispectral sensors, i.e., sensors with a discrete

number of spectral bands. Most historical data were obtained over wide swaths by the Landsat satellites equipped

with Thematic Mapper (TM), Enhanced Thematic Mapper (ETM+), and, more recently, Landsat 8 Operational Land

Imager (OLI) sensors with 30 m resolution. Additionally, data from the  Satellite Pour l’Observation de la

Terre  (SPOT) equipped with the sensor Haute Résolution Visible  (HRV) with 20 m resolution were found dating

back to 1986. Some pioneering studies about topsoil SOC content detection from satellite data have been carried

out, for instance, considering SPOT HRV bands  or Landsat bands .

Since 2000, hyperspectral satellite images have been made available from the Hyperion sensor with 30 m

resolution onboard the satellite Earth Observing 1 (2000–2017), and from the Compact High-Resolution Imaging

Spectrometer (CHRIS) with 17 m resolution onboard the Project for On-Board Autonomy (PROBA-1) micro-satellite

(2001–ongoing). Since 2019, the PRecursore IperSpettrale della Missione Applicativa (PRISMA) with 239 spectral

bands between 400 and 2505 nm has delivered images with 30 m resolution . Approaches of satellite-based

SOC modeling have been carried out from Hyperion , CHRIS-PROBA , simulated PRISMA  and

PRISMA . As the Environmental Mapping and Analysis Program (EnMAP)  was just launched on 1 April 2022

and is currently in the commissioning phase, some studies have considered simulated EnMAP for the assessment

of SOC content  till actual EnMAP data becomes available. To our knowledge, no reference was found about

simulated spectra for other forthcoming hyperspectral satellites such as CHIME, SHALOM or HypXim. Some

recent Chinese studies used the hyperspectral data of the Gaofen-5 satellite with a 30 m resolution and bandwidth

of 60 km . In parallel, with the emerging of precision agriculture, field-scale approaches to SOC modeling
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have also been developed from satellite sensors with higher spatial resolution: IKONOS with 4 m resolution ,

PlanetScope with 3 m resolution  and Worldview 2 with 2.5 m resolution .

Since 2015 and then 2017, when Sentinel-2A, followed by Sentinel-2B were launched, the Sentinel-2 (S2) time-

series equipped with the MultiSpectral Instrument (MSI, 13 spectral bands) provided not only wide spatial coverage

over swaths of 290 km, but also 10 to 20 m resolution (10 spectral bands) and a 5-day revisit. The advent of such

time-series favored the renewal of the satellite-derived spectral models and particularly for SOC, using either single

date acquisitions  or multi-date approaches . In addition, some authors

used Sentinel-1 synthetic aperture radar (SAR) images in their approach, either separately  or directly as

covariates within their modeling . Over very large areas or at national scales, other authors used coarse

resolution satellite series, being either MODIS with 250 or 500 m resolution  or Sentinel-3 equipped with the

Ocean and Land Colour Instrument (OLCI) with 300 m resolution .

2. Overall Characteristics of Soil Data

2.1. Soil Types and Agroecosystems under Study

Most approaches relying on pure spectral models have been carried out since 2019 and have dealt with temperate

croplands in Europe, China and North America, with few in Mediterranean  and arid environments 

 and even fewer in tropical ecosystems  (Figure 1).

[20]

[21] [22][23]

[21][24][25][26][27][28][29][30][31][32] [13][33][34][35][36]

[27][32][35]

[32][37]

[38][39]

[40]

[11][12][26][41] [6][42]

[43] [4][36][44][45]



Satellites Spectral Information and Soil Organic Carbon | Encyclopedia.pub

https://encyclopedia.pub/entry/24557 3/13

Figure 2. World map of satellite-derived SOC studies and the dominant soil types of the FAO-UNESCO Digital Soil

Map of the World at 1:5.000.000 scale . Time spans are split according to the first year of Sentinel-2 based SOC

studies, i.e., 2018.

Most studies were in rainfed annual cropping systems with very few studies in vineyards and even fewer in

orchards. It should be noted that information on management practices or soil surface conditions was scarce.

Soil types refer to the World Reference Base (WRB)  in most cases, although the US Soil Taxonomy  was

also used. The soils are typically cambisols and luvisols and, to a lesser extent, regosols, leptosols, stagnosols,

chernozems and the so-called “inceptisols” of the US Soil Taxonomy (mostly equivalent to cambisols) (Figure 2).

The most frequent qualifier is “haplic”. The “calcaric” qualifier is not dominant, and therefore calcium carbonate

contents can be assumed to be low.

Figure 2. Word cloud of soil types considered in satellite-derived SOC published studies (word size varies with

frequency).

2.2. Spatial Scales, Sample Size and Density

Most studies were carried out at the scale of small regions, of some hundreds of km : study areas covered a

median of 118 km  (Figure 3). The sample density for small regions ranged between 0.1 and 16.1 samples per

km , with a mean value of 2.7 samples per km . For large regions (up to 10,000 km ) and very large regions

(>10,000 km  and up to 150,000 km ), the mean sample density was lower than or equal to 0.1 samples per km ,
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while it was higher than or equal to 201 for farm- or field-scale studies. The total sample size ranged from 32 to

1753 topsoil samples, most of them being collected from the 0–10 cm or 0–20 cm topsoil. The median sample size

varies from 85 for field and farm, to 100 for small regions, 264 for large regions and reaches 625 samples for very

large regions.

Figure 3. Histogram of study scales considered in satellite-derived SOC studies.

2.3. Ranges of SOC Considered and the Issue of Standard Lab Determinations

Table 1  sheds light on the basic statistics of topsoil SOC considered in the selected studies. The datasets of

measured topsoil SOC contents refer to mineral soils with annual crop systems with an average value of ~15

g·kg  and a range of 30 g·kg  in median.

Table 1. Basics stats of topsoil SOC content values (top SOC, g·kg ) across 46 study areas with full description of

measured sampled sets , q1,

first quartile; μ, mean; q3; third quartile; σ, standard deviation.
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Statistic Min q1 µ q3 Max σ Median

Minimum top SOC 0.0 2.7 5.8 6.9 26.1 4.7 6.0

Maximum top SOC 10.0 21.8 82.7 115.8 439.0 102.0 37.3

Top SOC range 4.6 17.8 76.9 110.7 438.4 103.0 30.0

Average top SOC 1.7 12.6 17.4 19.6 50.0 9.5 15.1
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Mineral and organic soils are usually processed separately, but the threshold between these categories is not

uniform: at the scale of the USA, Wang et al.  chose to discriminate between mineral and organic soils using the

threshold of 120 g·kg .

As the analytical methods used for SOC measurements are far from being homogeneous among laboratories and

countries, and specifically in the context of the satellite-derived SOC studies, the basic stats displayed in Table

1 should be considered with caution. Dry combustion was used for 50% of the studies and wet oxidation for 30%,

while analytical methods were simply not specified for the remaining studies. Historically, one of the most-used

methods has been the Walkley–Black method  using wet oxidation. This method is still being used in numerous

countries, and several modified methods based on the same principles have also been proposed, e.g., .

The underestimation of the total SOC content caused by a reduced wet oxidation of the more stable or

“recalcitrant” fractions of SOC is the major limitation of this method.

The modern standard method, supposed to be the reference, is dry combustion coupled with an automated CHN

analyzer. Automated dry combustion (ADC) involves measurements of SOC based on CO  released from thermally

oxidized soil . Therefore, a recovery factor must be used to convert the results from the wet oxidation to the dry

combustion method. The most frequently used correction factor is 1.33 . However, a careful look at the literature

 shows that the recovery factors cover a wide range (1 to 1.8) depending on climate, soil types,

depth, texture, and the relative proportion of various SOC constituents. Moreover, CN analyzers determine total

carbon, i.e., SOC and carbonates. Thus, the SOC content of calcareous samples is determined by subtracting

carbon content from carbonates to total carbon content, e.g., .

Other standard methods that were not found among the satellite-derived SOC studies include various adaptations

of the Mehlich method  that aim at extracting humic substances, or loss-on-ignition , the latter being mainly

used for the organic horizons.

All methods have some drawbacks, and the less biased one is ADC, with some exceptions for very organic soils.

One consequence is that when using SOC data, and especially when compiling legacy SOC data, metadata should

include the laboratory method. Another consequence is that there is no universal factor to convert the results from

one method to another, and that such a conversion needs to be locally adapted. Finally, any change of method

between two dates may lead to false conclusions about SOC changes.

Moreover, over the past decade, laboratory spectroscopic measurements have been successfully tested to predict

SOC contents over the visible near-infrared and shortwave infrared ranges , in combination with UV-

visible fluorescence measurements  or restricted to the visible range only , or over the mid-infrared only

(4000–400 cm ) . An emergent technology is also laser-induced breakdown spectroscopy, e.g., . These low-

cost technologies are good candidates to provide numerous training information for digital soil mapping (DSM).

However, the uncertainty of these measurements often remains a limitation, if the aim is to detect small changes in

SOC with time. One emerging promising method is analyzing SOC with Rock-Eval analyses , which would pave
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the way to both estimating total SOC and indicators of its sensibility to mineralization and its potential for long-term

sequestration in soils.
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