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A solution is to develop a suitable estimation strategy which led scholars to propose different temperature
estimation schemes aiming to establish a balance among accuracy, adaptability, modelling complexity and
computational cost. This article presented an exhaustive review of these estimation strategies covering recent
developments, current issues, major challenges, and future research recommendations. The prime intention is to
provide a detailed guideline to researchers and industries towards developing a highly accurate, intelligent,
adaptive, easy-to-implement and computationally efficient online temperature estimation strategy applicable to
health-conscious fast charging and smart onboard BMS. Full Paper:https://doi.org/10.3390/en14185960
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| 1. Introduction

Lithium-ion batteries (LIBs) are widely used in electric vehicles (EVs), grid-tied stationary energy storage systems,
and several other consumer electronics primarily due to their high voltage rating (>4 V/cell) and high energy
density (~265 (W h) L -1 ) and longer operational life. The use of LIBs in automotive and aerospace applications
has led to larger cell sizes and large battery packs for a higher driving range and the requirement for more
aggressive charging and discharging. However, thermal instability and temperature-dependent nonlinear behavior
is some of the common concerns behind the safe and reliable operation of LIB systems. It is noticed that the
operation of batteries outside the safe operating temperature directly affects the performance of LIBs, such as
cycle life, efficiency, reliability and safety. Researchers investigating the thermal performance of LIB showed that
the best operating temperature range is from 25 °C to 40 °C [, Richardson et al. Bl demonstrated that the
difference between the core and surface temperature could reach more than 10 °C during real-life applications,
especially during the high discharging condition and fluctuating load current demand. The excessive temperature
difference and the accumulation of a large amount of heat inside the cell could lead to thermal runaway or even
explosions and fire ¥, That necessitates the employment of a battery management system (BMS) for effective
monitoring of battery parameters (current, voltage, temperature), estimation of battery states (state of charge
(SOC), state of health (SOH), remaining useful life (RUL), state of temperature (SOT) Bl). Research studies
demonstrated that SOC &, SOH [ and remaining storage capacity & are a function of temperature; thus, the
estimation of the battery states also depends on the accurate estimation of cell temperature. The Columbic

efficiency of a cell is greatly affected by the cell temperature during the charging and discharging period. Few other
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popular functionalities of BMS include cell balancing & and fault detection/diagnosis 19 to ensure optimum
capacity utilization, operational safety, reliability, and longer battery life often requires temperature information of an
individual cell and battery pack as well. Therefore, accurate information of core and surface temperature is highly
crucial for effective thermal management and safety of a LIB pack. Moreover, in cold climate areas, the battery
capacity is drastically reduced due to low-temperature operation that requires preheating the battery to a suitable
range for optimum performance 1122l |t is also evidenced that for every 0.1 °C beyond the safe operating region
the battery capacity degrades by about 5% 2l |t is evidenced that maximum heat is generated during the
discharging period especially with fast discharging 24, Therefore, accurate temperature estimation is essential for
effective thermal management and safety during fast charging and discharging and preheating of the cell to

minimize capacity fade.

In summary, it could be stated that the accurate information of cell temperature is undoubtedly serving as the
essential basis for the thermal management and safety of LIB. While the surface temperature of each cell can be
measured by installing a temperature sensor on each cell, the core or internal temperature measurement directly
using physical sensors is challenging. Moreover, installing a temperature sensor on each cell surface is not
practically feasible from a system cost, space and weight point of view as any high-capacity battery pack used in
EVs and grid-tied systems essentially consists of thousands of individual cells. Researchers have also incorporated
multi-dimensional sensing and self-healing functions into a single battery cell to develop a smart battery L3[26117]
(18] Smart cells are typically capable of parameter measurements and estimation of cell states including the state
of temperature. Despite the modularized application of BMS in smart batteries, accurate temperature estimation is
still required, as otherwise installing sensors in each cell results in high implementation cost and complexity.
Therefore, researchers are struggling hard to develop a high-fidelity, accurate, easy-to-implement, and
computationally inexpensive online temperature estimation strategy suitable for low-cost onboard BMS. Several
temperature estimation techniques have been proposed by researchers so far. Each different type of method has
its advantages and limitations with respect to the above-mentioned features of an optimum BMS. Therefore, a
summary of all the prominent techniques would be very helpful to researchers and developers serving as a
baseline for further research and as a guideline for selecting appropriate techniques suitable for a specific
requirement. However, such a summary with detailed discussion on current progress and explanation of the
existing issues, challenges and future research scopes has not yet been presented in the literature. Therefore, this
article covered the research gap by conducting a comprehensive review of the state-of-the-art temperature

estimation strategies reported in the literature so far.

| 2. Generic Temperature Estimation Strategy

Irrespective of battery chemistry, heat is accumulated inside the battery during the charging/discharging even
during idle conditions, majorly due to several largely exothermic chemical and electrochemical reactions as well as
transport processes. If the heat transfer from the battery to the surroundings is not sufficient, then the heat gets
accumulated inside the battery resulting in an increase in core and surface temperature, thereby risking thermal

runaway. This phenomenon is even more prominent in the case of hard-cased insulated batteries (as used in EVS),
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under fast charging/discharging and the operation in hot environments. Heat dissipation is worse in cylindrical LIBs
that are extensively used in high-capacity LIB packs. Therefore, a typical temperature estimation scheme consists
of two models, namely, a heat generation model and a heat transfer model 19 Often, a battery electrical model is
also used to estimate the total heat generation using Bernardi’s 22 heat generation model whereas few other
models use a mathematical form of battery electrochemistry to calculate the heat generation. Adaptive estimation
strategies also consider the influence of different battery states, such as SOC and SOH, as the battery temperature
is a function of these battery states. Then, the heat transfer model takes the estimated total heat quantity as well as
few other external measurements such as ambient temperature to predict the temperature of that cell. Closed-loop
estimation schemes use the measured or the estimation temperature as feedback to improve the prediction

accuracy. A schematic layout of a generic temperature estimation strategy for LIB is shown in Figure 1 .

| 3. Classification of Temperature Estimation Strategies

As shown in Figure 1 , typically, a temperature estimation scheme consists of a heat generation model and a heat
transfer model. The heat generation models reported in the literature can be broadly classified from two different
aspects; based on modelling strategy and based on the source of heat generation. Heat generation models based
on modelling strategy can be classified into three groups, physics-based electrochemical models [21l1221[23]124]
equivalent circuit models (ECM) 231281271 plack-box models 28129391 |n contrast, based on the source of heat
generation, these models can be grouped as a concentrated model, distributed model B and heterogeneous
model (2382 The concentrated heat generation model considers that all heat is generated at the core only, usually
considered to reduce the modelling complexity. The distributed heat generation model considers that uniform heat
is generated throughout the entire cell geometry whereas the heterogeneous model can capture different heat
generation from difference cell layers usually resulting in temperature and current density gradients inside the cell.
The heterogeneous models are more detailed thus can produce highly accurate predictions; however, these are
most complex and require extensive experiments for modelling. Distributed heat generation models are a balance
between the concentrated and heterogeneous models. The heat transfer models can be classified into finite
element analysis (FEA)-based models [2ARBSIB4IESISE]  heat capacitor-resistor models (lumped or distributed
parameter) 2837138139141 and data-driven techniques. Heat capacitor—resistor-based models use the analogy
between electrical and thermal systems. A heat capacitor—resistor can be further classified as mentioned in Figure
1 . Lumped parameter models are simple and useful for online applications, however, only one or two average
temperatures can be predicted with these models whilst the battery temperature distribution is not spatially uniform,
especially in larger capacity cylindrical LIB cells. On the other hand, complex distributed models 2142 can
describe the detailed temperature distribution in a cell, however, they are not suitable for online application due to
their computational complexity. Several other detailed models of LIB accounting for the thermal characteristics of
different layers are studied in [42144][45146][471[48] ' A two-state/node model provides information on core and surface

temperature whereas a one-state/node model can provide only core temperature.
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Figure 1. Family of (A) Heat generation model, (B) Heat transfer model, (C) Temperature estimation strategy.

The heat transfer model where the total heat generation is one of the input parameters is collectively called the
battery thermal model where the total heat generation is estimated by the battery heat generation model. The
thermal modelling of LIB is a separate area of study and is not under the scope of this study. It deals only with the
temperature estimation strategies. However, as most of the temperature estimation strategies are extensively
depending on thermal modelling, an overview of each modelling technique is also discussed with the respective
temperature estimation strategy for better understanding. Researchers employed different types of heat generation
models with different kinds of heat transfer models to come up with a temperature estimation scheme. Therefore, it
is challenging to classify these estimation strategies. Broadly, the temperature estimation schemes can be grouped
into electrochemical thermal modelling-based, equivalent electric circuit model (EECM)-based, machine learning
(ML)-based, numerical-model based, direct impedance measurement-based, magnetic nanoparticles-based
schemes. The families of the LIB heat generation model, heat transfer model and temperature estimation strategy

are illustrated in Figure 2 .

4. Comprehensive Review of Temperature Estimation
Strategies
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Further, depending on the modelling complexity, EECM could be also classified as lumped-parameter and
distributed parameter models. Lumped-parameter models are used for simplification and thus low computational
cost compared to detailed distributed models. Computationally efficient lumped thermal models are developed
using single temperature as input to capture the model parameters 42 while some researchers used both surface
and core temperatures of the cell to construct the lumped thermal models. Some also considered the correlation
between cell geometry and other physical properties with thermal modelling BY. However, several assumptions
were made during modelling leading to inaccurate temperature estimation compared to detailed thermal modelling.
Further, thermal models that only estimate the core temperature are considered as single-state/node B, whereas
if the model can estimate both surface and core temperature then it is termed as two-state/node 221 thermal model.
The parameters of the EECM are identified through ranges of experimental studies such as electrochemical
impedance spectroscopy (EIS) or utilizing externally measurable quantities, such as voltage, current, and
temperature. Few studies also considered various conditions of SOC, SOH and estimated surface/core
temperatures to make the model more robust. It is very difficult to group those thermal models because lumped
models are used in both single-state and dual-state modelling and the model could be first-order and second-order.
Therefore, the literature is grouped into cell-level and pack-level temperature estimation schemes that are

discussed below.

Cell internal temperature estimation using a lumped-parameter thermal model and an approximate distributed
thermal model have several drawbacks. Firstly, accurate determination of thermal model parameters such as heat
generation and cell thermal properties is highly challenging. Heat generation inside the cell is typically
approximated by measuring the cell operating current, voltage and the internal resistance that are again functions
of SOC, cell internal temperature and SOH. Moreover, a cell is constructed using many different materials
combined into a layered structure and thermal contact resistances between these layers are often unknown.
Temperature estimation methods use surface temperature measurements and even the combination of surface-
mounted temperature sensor and thermal model typically failed to detect the thermal runaway as rapid fluctuations
in the internal temperature is difficult to capture using surface-mounted sensors because the heat conduction
between the core and battery surface takes a considerable amount of time 28], Furthermore, embedding micro-
temperature sensors within the cell 453 js not practically possible for a large capacity LIB pack from a
manufacturing complexity and system cost point of view. Hence, the core temperature measurement using a

physical sensor is not an appropriate method for industrial applications.

Online EIS-based temperature estimation strategy termed impedance-temperature detection (ITD) was proposed
by Richardson and Howey 38! for sensorless temperature estimation which is adaptive to cell ageing and practical
uncertainties. However, ITD cannot provide a general solution alone, thus, such a strategy combines surface-
mounted sensors with ITD for accurate online temperature estimation 2. Still, temperature sensors are required to
be installed. Further to this study, they integrated ITD with an electric-thermal model along with a DEKF for online
core temperature estimation of a LIB cell even with unknown convection coefficient. They also demonstrated that
the performance of the thermal model plus ITD is almost similar to the ITD with surface thermal sensors. Despite
the advantages, the major limitations of the strategy are online impedance determination and the requirement of an

accurate electric thermal model, thus encompassing the same drawback of conventional thermal modelling-based
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strategies. Moreover, although the strategy can estimate both core and surface temperature of an individual cell,

the pack-level estimation strategy was not illustrated in this study.

The influence of cell temperature, SOC and SOH on the impedance spectrum, excitation frequency and thereby
estimation accuracy of cell internal temperature was investigated by Zhu et al. B4, Here, the temperature
estimation was made based on an impedance response matrix analysis which was developed using EIS
measurements. Despite high accuracy, the effect of the nonuniformity of the cell temperature and the correction
method was not considered. Moreover, an extensive experimental study is required for modelling and the
computational cost is also very high. Thus, the online application of the strategy is challenging. Identification of
suitable frequency and other EIS parameters is very difficult whilst the estimation accuracy significantly depends on
these parameters. Moreover, accurate determination of the real and imaginary parts of the impedance is highly
challenging, whilst different decisions for these two parts lead to inaccurate temperature estimation. A combination
of Linear Parameter Varying (LPV) thermal model and a polytopic observer-based battery-cell temperature
estimation algorithm was proposed by Debert et al. 28, The EIS-based strategy was also employed in references
[BI591601[611(62] o estimate the core temperature. Despite high accuracy, the major limitation is the determination of
accurate impedance-temperature characteristics and it should be acquired in advance through tedious preliminary
tests. In addition, the impedance-temperature characteristic of a cell is influenced by cell ageing leading to
inaccurate prediction due to SOH deterioration. A summary of direct impedance measurement-based temperature

estimation strategies is presented in Table 1 .

Table 1. Summary of direct impedance measurement-based strategies.

Reference Types of Models Important Note

Srinivasan et al. Direct measurement of electrochemical

Experimental validation with EIS data

[63][64] impedance
Schmidt et al. Direct measurement of electrochemical Temperature non-uniformity was not

[65]

impedance

considered, experimentally validated

Richardson et
al. &

Thermal-impedance model + EIS
measurement at single frequency +
surface temperature feedback

Independent of cell thermal properties, heat
generation or thermal boundary conditions,
experimental validation with EIS data

Richardson and

Online EIS measurement (impedance-
temperature detection (ITD) + dual-

Unknown convection coefficient is considered,

[56] : :
Howey extended Kalman filter (DEKF) experimentally validated
. . Influence of cell temperature, SOC and SOH
57] Impedance response matrix analysis, . .
Zhu et al. developed using EIS measurements on the impedance spectrum, experimental
validation with EIS data
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