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Oncolytic virotherapy (OVT) has received significant attention in recent years, especially since the approval of talimogene

Laherparepvec (T-VEC) in 2015 by the Food and Drug administration (FDA). Mechanistic studies of oncolytic viruses

(OVs) have revealed that most, if not all, OVs induce direct oncolysis and stimulate innate and adaptive anti-tumour

immunity. With the advancement of tumour modelling, allowing characterisation of the effects of tumour microenvironment

(TME) components and identification of the cellular mechanisms required for cell death (both direct oncolysis and anti-

tumour immune responses), it is clear that a “one size fits all” approach is not applicable to all OVs, or indeed the same

OV across different tumour types and disease locations. This article will provide an unbiased review of oncolytic reovirus

(clinically formulated as pelareorep), including the molecular and cellular requirements for reovirus oncolysis and anti-

tumour immunity, reports of pre-clinical efficacy and its overall clinical trajectory. Moreover, as it is now abundantly clear

that the true potential of all OVs, including reovirus, will only be reached upon the development of synergistic combination

strategies, reovirus combination therapeutics will be discussed, including the limitations and challenges that remain to

harness the full potential of this promising therapeutic agent.
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1. Introduction

Advancements in virology and molecular biology techniques over recent decades have allowed us to exploit the anti-

tumour potential of oncolytic viruses (OVs) . The unique ability of OVs to exploit oncogenic signalling pathways provides

a significant advantage over traditional treatment modalities. OVs are specifically defined as viruses which: (i)

preferentially infect and kill malignant cells through viral replication and oncolysis, and (ii) engage the immune system to

promote anti-tumour immunity. Additional mechanisms of action have also been reported, including disruption of tumour-

associated vasculature or stroma and modulation of the tumour microenvironment (TME) .

An array of OVs—naturally occurring, attenuated, and genetically modified—have been investigated in pre-clinical models

and clinical trials but only two have received approval for clinical use: (i) a genetically engineered adenovirus H101,

approved in China in 2005 , and (ii) the Food and Drug Administration (FDA)-approved talimogene laherparepvec (T-

VEC)—a herpes simplex virus type 1 (HSV-1) genetically engineered to limit neurovirulence and promote an

immunostimulatory environment .

Figure 1. Although the oncolytic capacity of various viruses was noted already in the 1950s, development of oncolytic

viruses (OVs) as therapeutic agents was limited by safety and efficacy concerns for a long time. With a greater

understanding of virology and molecular techniques, the interest in OVs has peaked in recent years and a number of

viruses, including reovirus, are now in clinical development. Today, we know that OVs exert their anti-tumour effects in
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several ways, e.g. direct oncolytic killing through replication in malignantly transformed cells; innate and adaptive anti-

tumour immunity; disruption of the local tumour microenvironment sustaining the tumour; and intratumoural

immunosuppressive effects, e.g. recruitment of regulatory T cells and enhanced expression of immune checkpoints on

tumour cells. This knowledge will allow future initiatives to the identify the most efficacious combination therapies,

optimised dosing schedules, and administration routes required for the success of reovirus as a therapeutic agent.

2. The Emergence of Reovirus as a Therapeutic Agent

The Reoviridae family of viruses has found hosts in mammals, fish, birds and plants . Three serotypes of mammalian

orthoreovirus have been identified: type one Lang, type two Jones, and type three Abney and Dearing . Each differs in

its in vivo tropism, despite a high degree of genetic similarity . Type-specific diversity occurs in the S1 gene, encoding

the outer capsid σ1 attachment protein, which has undergone significant evolutionary divergence . Orthoreovirus type

two Jones was the first serotype observed to replicate specifically in malignant cell lines ; however, it is the mammalian

orthoreovirus type three Dearing strain (T3D)—now manufactured as pelareorep but previously known as Reolysin —that

has made progress as a therapeutic agent. Mammalian orthoreovirus T3D (hereafter referred to as reovirus) is typically

isolated from human gastrointestinal and upper respiratory tracts . In most individuals, infection proceeds

asymptomatically causing mild enteric or respiratory illness in young children and being relatively non-pathogenic in

adults, in line with its designation as a respiratory enteric orphan virus (reovirus) . There have been sporadic reports of

severe pathology associated with reovirus infection in infants and immunocompromised individuals 

and more recently, reovirus has been implicated in coeliac disease by promoting a T 1 immune response, a response that

bodes well for its use as an immunotherapeutic tool although oral delivery should be avoided to limit these potential

unwanted side effects .

Reovirus is a non-enveloped, double-stranded (ds) RNA virus approximately 85 nm in diameter, with two concentric

icosahedral protein capsids . The outer and inner capsids protect the dsRNA genome which comprises 23.5 kbp in ten

segments termed large (L1-3), medium (M1-3), or small (S1-4) according to size . The gene segments encode

eight structural proteins (λ1-3, µ1-2, and σ1-3) and the non-structural proteins, µNS and σNS . μ1 and σ3 form part of

the outer capsid, λ3 forms a subunit of the RNA polymerase and σ1 and λ2 are important for viral attachment, although σ1

initiates target cell entry . The proteins also protect the virus from immune-surveillance by preventing a host anti-viral

interferon (IFN) response; σ3 binds to dsRNA and prevents its binding to dsRNA-dependent protein kinase R (PKR; a

dsRNA sensor)  and μNS sequesters the IFN transcription factor (interferon regulatory factor 3; IRF3) and inhibits its

translocation to the nucleus .

3. Tumour Specificity and Replication

The reovirus life-cycle is shown in Figure 2. Viral entry occurs over multiple steps, the first being a low-affinity “tethering”

of the reovirus σ1 protein to cell surface sialic acid . Subsequently, σ1 engages junctional adhesion molecule A (JAM-

A), the canonical reovirus receptor , which is ubiquitously expressed throughout the body and has several

important roles in normal cellular processes including tight junction formation, leukocyte migration, and angiogenesis .

Fortuitously, JAM-A is also overexpressed in several cancers, including both haematological and solid malignancies

. Following reovirus engagement with JAM-A and receptor-mediated endocytosis, the viral particle

undergoes acid-dependent cathepsin-mediated proteolysis within the endosome to form an intermediate subviral

particle (ISVP) characterised by the loss of σ3 and cleavage of µ1 . The proteolytic uncoating, principally by cathepsins

L and B, is critical for penetration of the endosome membrane by µ1; ISVPs undergo a conformational change causing

autocleavage of µ1 into µ1N which triggers pore formation in the endocytic membrane  and delivers transcriptionally

active reovirus into the cytosol  for replication. Capped, positive-sense single stranded (ss) RNA serves as mRNA for

protein translation and provides a template for replication of nascent dsRNA genomes . Transcription and translation

occur in cytoplasmic “viral factories” , with packaging of the segmented genome into virions occurring concomitantly

with RNA synthesis . Viral egress can be non-cytolytic in the absence of transformation; however, the release of

progeny virus is typically lytic in permissive, transformed cells .
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Figure 2. Reovirus replication: 1. Reovirus is first tethered via a weak interaction between σ1 and cell surface sialic acid;

σ1 then binds with high affinity to junctional adhesion molecule A (JAM-A) resulting in internalization of the virus via

receptor-mediated endocytosis. 2. Once internalized, the virus is transported to early and late endosomes where it

undergoes proteolytic digestion to remove the outer capsid protein σ3 resulting in the formation of infectious subvirion

particles (ISVPs). 3. Alternatively, ISVPs may be formed by extracellular proteases within the tumour environment allowing

direct entry into cells via membrane penetration. 4. After further proteolytic degradation a transcriptionally active viral core

is released into the cytoplasm. Transcription and translation occur ultimately leading to the assembly of new viral progeny,

host cell death and progeny release. Figure created using Biorender (https://biorender.com/).
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