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The use of fluorescent imaging probes that monitor the activity of proteases that experience an increase in expression

and activity in tumors is well established. These probes can be conjugated to nanoparticles of iron oxide, creating a

multimodal probe serving as both a magnetic resonance imaging (MRI) agent and an indicator of local protease activity.

Previous works describe probes for cathepsin D (CatD) and metalloproteinase-2 (MMP2) protease activity grafted to

cross-linked iron oxide nanoparticles (CLIO). Herein, we have synthesized a triply labeled fluorescent iron oxide

nanoparticle molecular imaging (MI) probe, including an AF750 substrate concentration reporter along with probes for

cathepsin B (CatB) sand MMP2 protease activity. The reporter provides a baseline signal from which to compare the

activity of the two proteases. The activity of the MI probe was verified through incubation with the proteases and tested in

vitro using the human HT29 tumor cell line and in vivo using female nude mice injected with HT29 cells. We found the MI

probe had the appropriate specificity to the activity of their respective proteases, and the reporter dye did not activate

when incubated in the presence of only MMP2 and CatB. Probe fluorescent activity was confirmed in vitro, and reporter

signal activation was also noted. The fluorescent activity was also visible in vivo, with injected HT29 cells exhibiting

fluorescence, distinguishing them from the rest of the animal. The reporter signal was also observable in vivo, which

allowed the signal intensities of the protease probes to be corrected; this is a unique feature of this MI probe design.

Keywords: cathepsin B ; matrix metalloprotease-2 ; biomarker ; near-infrared fluorescent probe ; molecular imaging

1. Introduction

Genomic and proteomic approaches have identified a host of molecular markers associated with disease . A

central challenge in contemporary biomedical research is the characterization of these factors in the context of the entire

organism. Molecular imaging (MI) techniques hold great promise for mapping molecular activities in living animals, but

previously reported probes are thus greatly limited in their ability to measure multiple activities simultaneously. Herein, we

report the preparation of a fluorescence-based, in vivo optical imaging probe bearing three fluorescent reporters, two of

which are responsive to specific protease activities.

Fluorescence-based imaging probes have been fabricated previously using a high molecular weight graft polymer on

which fluorochromes were conjugated to the polymer backbone. The fluorescence from these probes was initially

quenched until a particular protease cleaved the polymer backbone. Prior publications report on such probes to monitor

CatD protease activity , MMP2 , and thrombin . Another type imaging probe that has been fabricated previously uses

iron oxide nanoparticles as a combined optical imaging and magnetic resonance (MR) agent and, in doing so, becomes

multimodal .

A dual-fluorochrome imaging probe using iron oxide nanoparticles was described previously , with both enzymatic

activity through a fluorescently-labeled cleavable enzyme substrate and, in vivo, via a substrate concentration through a

non-cleavable internal standard. The use of these probes initially yielded fluorescence as a function of the intensity of the

light used, its depth and the site of interest, and the enzyme activity and delivery of the probe (local substrate

concentration) . Here, we report on an improvement and extension of our previous dual fluorochrome by creating a

triple fluorochrome probe (TFP), containing one fluorochrome to report on the local substrate concentration and two

fluorophores to monitor the local activity of two enzymes, CatB and MMP2. Unlike previous synthetic strategies employed

to create similar imaging probes, the technique outlined in this report pre-labels the peptide substrates prior to the

conjugation of the nanoparticle scaffold. The peptide substrates are then conjugated to the nanoparticle surface, while the

reporter fluorochrome (for probe concentration) is attached to the nanoparticle through a proteolytic-resistant linkage. The

ratio of fluorescence due to the enzymatic cleavage of each substrate to the fluorescence of the reporter fluorochrome

reflects activation by that particular protease and could be used to correct for differences in the size and depth of the

target lesions. By using this method, we are able to, simultaneously in vivo, image multiple enzyme activities and multiple

molecular parameters.
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2. Findings

The probe design and chemistry offer a flexible design for optically activatable nanoparticles that can include different

substrates for other enzymes and multiple enzymatic targets. Unlike previous synthetic strategies employed to create

similar imaging probes, the technique outlined in this paper pre-labeled the peptide substrates prior to conjugation to the

nanoparticle scaffold. By pre-labeling the peptide substrates with a fluorochrome, multiple enzymatic substrates with

distinct optical labels can be conjugated to the iron oxide scaffold. However, as more fluorescent labels are added to the

imaging probe, more sophisticated techniques such as fluorescence molecular tomography (FMT)  or spectral

unmixing techniques  can increase fluorescence sensitivity or further refine and distinguish between similar

optical channels, respectively.

The affixing of polyarginyl-containing regions to peptide substrates that are attached to nanoparticles has increased

translocation through cell membranes. Internalization can be accomplished through the use of positively charged peptide

signals, such as those derived from human immunodeficiency virus (HIV) trans-activator of transcription (Tat) protein, or

homeoprotein transcription factor . CLIO nanoparticles have been conjugated to portions of the tat peptide

sequence, and these Tat-CLIO nanoparticles have translocated within cells . Membrane translocating activity

appears to be primarily dependent on the headgroup of arginine , so nanoparticles conjugated to peptides with

simply polyarginyl regions may efficiently enter cells, as was seen with flow cytometry data (Figure 5C).

Using a single particle, the TFP multimodal imaging probe would be able to gather through in vivo imaging, in addition to

lesion size and depth, new and more types of information simultaneously. By adding an optical channel that monitors the

delivery of the probe, the probe can indicate its transport and concentration within the vicinity of the target as the other two

fluorochromes monitor the activity of the probe interacting with its molecular target, which, in this case, is a protease.

Various physiological factors, including blood flow as well as capillary permeability and volume, can affect probe transport

. These studies have shown that the TFP activation can provide information independent of the absolute

fluorescence of the other two optical channels. Thus, the reporter fluorochrome (AF750) provides an internal standard for

determining probe concentration and allows fluorescence from protease activity (Cy5.5 for CatB and AF546 for MMP2) to

be corrected for variable levels of probe transport.

The elevated levels of enzymatic activity of CatB and MMP2 are linked to a variety of medical conditions, such as cancer

metastasis . The development of enzymatic diagnostic nanoparticles may be realized due to similar particles

that are clinically used and accumulated in the liver, spleen, and lymph node macrophages. Designing the probe

described in this study may provide a more accurate and global picture of enzymatic activity related to certain diseases

given its ability to obtain satisfactory optical images of multi-enzymatic activity in vivo. Future imaging probes of this type

might be developed for clinical use.
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