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Tissue-specific gene methylation events are key to the pathogenesis of several diseases and can be utilized for
diagnosis and monitoring. By employing a data-driven approach, researchers establish specific methylation
disease profiles to be applied in clinical practice and to understand human pathology.

methylation machine learning microarrays model liquid biopsy diabetes

breast cancer inflammation

| 1. Introduction

Aberrant gene methylation contributes to the pathophysiology of human diseases, such as cancer [, autoimmune
disorders 2 and diabetes Bl The detection of alterations in DNA methylation, either on tissues or in liquid biopsies,
has been involved in the initiation IR, progression I8 and response to the treatment of several diseases 219
(11 and, thus, it is thought to hold valuable information for their clinical management. Genome-wide methylation
analyses enable the study of a vast number of CpG sites and produce high-dimensional datasets that can be
exploited for a deeper understanding of the contribution of methylation in human pathology. They also offer the

opportunity to build specific biosignatures for personalized clinical solutions of clinical importance.

In parallel to the rapid accumulation of multiple high-throughput omics data, machine learning (ML) approaches
have been introduced to enable their exploitation. ML uses a variety of algorithms that perform intelligent
predictions and is highly applicable in biomarker discovery 22131 Specifically, ML applied to different type of omics
datasets has been used for diagnosis or classification and prognosis in various cancers 143161 nheyrological
diseases 17, coronary artery disease 18l osteoarthritis 12 and diabetes 131, However, developing an ML approach
entails a lot of effort to select and configure the appropriate algorithm to process the data to learn from, among
other things (2%, To this end, automated tools for ML (AutoML) have recently become available: they promise to
democratize data analysis to non-experts, drastically increase productivity, improve the replicability of the statistical
analysis, facilitate the interpretation of results, and shield against common methodological analysis pitfalls, such as
overfitting 21, Bioinformatic analysis combined with AutoML analysis of big omics datasets is able to extract
knowledge and predictive models that can be used in personalized clinical decisions. To the best of their

knowledge, only a few studies focusing on cancer have applied ML to methylation data analysis [1415][16]

Cell-free DNA fragments circulate in the biological fluids of healthy and diseased individuals. The cellular release

mechanisms of circulating cell-free DNA (ccfDNA) include apoptosis, necrosis and active release from viable cells.

https://encyclopedia.pub/entry/20918 1/19



Tissue-Specific Methylation Biosignatures | Encyclopedia.pub

Recent studies have shown that multiple tissues contribute to the ccfDNA mixture of healthy individuals, while in
disease, it is enriched also from pathological tissues (221231, ccfDNA fragments carry identical methylation footprints
to their tissue of origin, serving as valuable liquid biopsy material, as they can dynamically mirror changes
throughout the pathophysiological process 24l Tracing in ccfDNA the methylation footprints of a tissue presents an

unprecedented opportunity for early diagnosis and monitoring.

To tackle this major challenge in biomarker discovery, researchers established an in silico pipeline based on high-
throughput microarray methylation datasets to identify disease/tissue specific methylation fingerprints. Three
pathological entities of major burden, i.e., one malignancy (breast cancer, BrCa), one inflammatory (osteoarthritis,
OA) and one metabolic (diabetes) were selected as use cases in the approach. Instead of the comparison, adopted
in most studies, of a pathological tissue to the respective healthy one (for example breast cancer tissue vs. normal
breast), here they chose to compare methylomes from a tissue or cell type related to a specific pathology to the
bulk of methylomes from other healthy tissues. Differential analysis revealed specific differentially methylated
genes (DMGs) which were then subjected to functional analysis to unravel epigenetically regulated pathways in
each pathology. Following this, AutoML technology, specially designed for analyzing high-dimensional biological
datasets, was applied to build tissue-specific methylation biosignatures, validated also in ccfDNA. Selected

features were additionally studied using a text mining bioinformatic tool to reveal their biological associations.

| 2. Breast Cancer
2.1. Differential Methylation Analysis Comparing BrCa and Healthy Tissues

In order to identify differentially methylated genes in a comparison between BrCa tumors and healthy tissues, raw
methylome data from 218 BrCa (primary and metastatic) tumors and 193 healthy tissues, including healthy breast,
blood, liver, muscle, colon, gastric, lung and adipose, were subjected to analysis using RnBeads. In total, 19,248
DMGs (false discovery rate (FDR) < 0.05) emerged. Among those, 8820 were found to be hypomethylated, while
10,428 showed hypermethylation in BrCa in relation to healthy tissues. A heatmap visualization of DMGs is
presented in Figure 1D. Further, DMGs were ranked based on FDR, and the 400 top-ranking genes were chosen
for functional analysis. Of these 400 DMGs, 171 were hypomethylated and the remaining 229 were

hypermethylated in BrCa in relation to healthy tissues.
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Figure 1. Differential methylation analysis comparing BrCa and healthy tissues. Gene ontology analysis of the top
400 DMGs in the aspects of (A) biological process, (B) cellular component and (C) molecular function analysis. (D)
Heatmap plot of top 100 DMGs comparing BrCa and healthy tissues. Abbreviations: BrCa = breast cancer, DMGs =
differentially methylated genes.

2.2. Functional Analysis of DMGs Comparing BrCa and Healthy Tissues

Gene ontology analysis was carried out using the DAVID tool (Figure 1A-C). In molecular function analysis, the
most enriched functions were G-protein-coupled receptor activity, sequence-specific DNA binding, transcriptional
activator activity and RNA polymerase |l core promoter proximal region sequence-specific binding. In biological
process enrichment analysis, DMGs were found to participate mainly in G-protein-coupled receptor signaling
pathways, the positive regulation of transcription from RNA polymerase |l promoter, transcription from RNA and the
polymerase Il promoter regulation of transcription from RNA polymerase Il promoter. Finally, cellular component

analysis showed mainly a plasma membrane enrichment of the studied genes. Reactome analysis via
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ConsensusPathDB mainly revealed enrichment in sensory perception, the genetic transcription pathway, RNA

polymerase Il transcription and gene expression.
2.3. BrCa-Specific Methylation Biosighature through AutoML

B-values produced by RnBeads were analyzed using JADBIo in order to construct an accurate model specific for
tracing BrCa. The original dataset (218 BrCa tissues and 193 healthy tissues) was automatically and randomly split
into a training dataset of 151 BrCa and 131 healthy tissues and a validation dataset of 66 BrCa and 55 healthy
tissues. Analysis of the training dataset of 29,703 gene array features produced one signature containing 5

features via a support vector machines (SVM) algorithm (https://app.jadbio.com/share/4fd50c38-d0al-4{28-96¢9-

480b29b4a3e2, accessed on 1 October 2021). Three of them were protein-coding genes, namely, CCDC181,
HIST2H3PS2 and CFTR, and two were RNA genes, namely, RUVBL1-AS1 and AL161908.1 (Table 1). All genes
presented increased methylation in BrCa in relation to healthy tissues/cells. In discriminating BrCa against healthy
tissues, this signature reached an area under the curve (AUC) of 0.987 (0.963-1.000) and an average precision of
0.987 (0.955-1.000) (Figure 2A). Upon validation in the test dataset, the model showed an AUC and an average
precision of 0.995 (Figure 2A), verifying the model’s performance metrics. The performance and inspection results

are depicted in Figure 2B-D.
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Figure 2. BrCa-specific methylation biosignature built using AutoML. (A) ROC curves of training (blue line) and
validation (green line) models. (B) Supervised PCA plot (i.e., only considering the selected relevant biomarkers)
presents separation between BrCa (blue) and healthy tissues (green) within the training group. (C) Out-of-sample
probability density plot (i.e., probability predictions when samples were not used for training) depicts discrete
distributions among studied classes of the training group. (D) PCA plot presents separation between BrCa (blue)
and healthy tissues (green) within the validation group. (E) ROC curves of training (blue line) and external
validation (green line) models and (F) PCA plot presents separation between BrCa ccfDNA (blue) and healthy
ccfDNA (green) within the external validation group. Abbreviations: BrCa = breast cancer, ROC = receiver

operating characteristic, PCA = principal component analysis.
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Table 1. Differentially methylated genes selected in the BrCa-specific signature built using AutoML analysis. Their

biological characteristics and functions revealed by GO analysis as well as their methylation status are described.

GO— Methylation in
UniReD BrCa in Relation

Signature  Gene . GO—Molecular GO—Cellular . .
Genes Type 2] SCLLL Function Components Blolaies Score to Healthy
Process -
Tissues
manchette,
Protein Coiled-Coll microtubule cytoplasm,
ccDc181 Codin Domain NA bindin cytoskeleton, NA 5 Hypermethylation
9 Containing 181 9 microtubule,
cilium
Protein Histone Cluster DNArStlzgnmg, Nucleus
HIST2H3PS2 . 2, H3, NA protemn ' NA 1 Hypermethylation
Coding heterodimerization = Chromosome
Pseudogene 2 L
activity
RUVBL1
RUVBL1- RNA . .
AS1 Gene Antlsenlse RNA NA NA NA NA NA Hypermethylation
CDK-mediated c_holesterql
. biosynthetic
phosphorylation .
nucleotide nucleus, process,
and removal of binding, chloride cytoplasm ion
CF Cdc6, bacterial 9 . ytop '
. . ! : channel activity, lysosomal transport,
Protein  Transmembrane infections in CF . . .
CFTR . . intracellularly membrane, chloride 7 Hypermethylation
Coding Conductance airways,
) ATP-gated endsome, transport,
Regulator regulation of ) b
- chloride channel early vesicle
CFTR activity, . K
) activity endsome docking
salivary . .
) involved in
secretion
exocytes
Novel
RNA Transcript, .
AL161908.1 Gene e —rr NA NA NA NA NA Hypermethylation
LIM1B

Abbreviations: BrCa: breast cancer, AutoML: automated machine Learning, GO: gene Ontology, NA: non-available.

2.4. Validation and Applicability of BrCa-Specific Methylation Biosignature on
ccfDNA

To validate the discrimination performance of the BrCa-specific five-feature biosignature on ccfDNA and its
applicability to liquid biopsy, researchers applied it to an external independent dataset of three BrCa ccfDNA
samples and five ccfDNA samples from age-matched healthy women. The analysis revealed the model's AUC and

an average precision of 1.000 (Figure 2E,F).

2.5. Biological Relevance of Genes Selected in the BrCa-Specific Methylation
Biosignhature

Feature selection performed via ML identifies a minimum subset of features bearing the maximal classifying ability
between groups. In tasks such as the one addressed here, i.e., to build a tissue-specific methylation biosignature, it
is interesting to know if the DMGs included in the model have an established role in the related pathophysiology as

revealed by their biological characteristics. All five DMGs of the BrCa biosignature were subjected to GO analysis
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using the GeneCards database (Table 1). CCDC181’s molecular function is related to microtubule binding, while it
is mainly found in the manchette and cytoplasm. HIST2H3PS2’s molecular function is associated with DNA binding
and protein heterodimerization activity and is mainly found in nucleus and on chromosome. CFTR’s molecular
function is related, among other things, to nucleotide binding and chloride channel activity, and it is located in the
nucleus, cytoplasm and in other cellular components and participates in cholesterol biosynthesis, ion and chloride
transport among other things. For RUVBL1-AS1 and AL161908.1, no information was found in the GeneCards
database (Table 1).

Furthermore, in order to examine if the protein products of the three protein-encoding DMGs included in the BrCa-
specific biosignature were somehow implicated in BrCa pathophysiology, researchers analyzed the identified
genes, using a literature mining tool UniReD, which predicts functional associations between proteins. As
previously 181 for this analysis, they used the following list of 10 protein-coding genes with an established role in
BrCa pathophysiology, namely, BRCA1 [23], BRCA2 [23] RASSF1 (28] ESR1 121 TP53 (28] pIK3CA 23 BRMS1 B9,
CDH1 Bl csT6 B2 and PTEN [231. All genes were found to be associated with breast cancer pathways according
to the KEGG pathway identification. CFTR reached a score of 7, while CCDC181 reached a score of 5 and

HIST2H3PS2 a score of 1, showing fewer known associations (Table 1).

| 3. Osteoarhtitis
3.1. Differential Methylation Analysis Comparing OA and Healthy Tissues

Methylomes of OA cartilage tissues were analyzed in comparison to healthy tissues, including healthy cartilages,
breast, blood, liver, muscle, colon, gastric, lung and adipose. Raw data from 151 OA cartilages tissues and 216
healthy tissues were subjected to RnBeads for differential methylation analysis and 18,413 DMGs (FDR < 0.05)
emerged. Among those, 12,400 DMGs were found to be hypomethylated, while 6013 were found to be
hypermethylated in OA in relation to healthy tissues. A heatmap of DMGs is presented in Figure 3. Further, the 400
top-ranking DMGs based on FDR were chosen for functional analysis. Of these, 354 were hypomethylated, and the

remaining 56 were hypermethylated in OA in relation to healthy tissues.
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Figure 3. Differential methylation analysis comparing OA and healthy tissues. Gene ontology analysis of top 400
DMGs in the aspects of (A) biological process, (B) cellular component and (C) molecular function analysis. (D)
Heatmap plot of top 100 DMGs comparing OA and healthy tissues. Abbreviations: OA = osteoarthritis, DMGs =

differentially methylated genes.
3.2. Functional Analysis of DMGs Comparing OA and Healthy Tissues

Gene ontology analysis of the 400 DMGs was conducted using the DAVID tool (Figure 3A—C). Molecular function
analysis showed enrichment in sequence-specific DNA binding, insulin-like growth factor binding, integrin binding,

heparin binding and collagen binding. Regarding biological process enrichment analysis, DMGs were found to
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participate mainly in anterior/posterior pattern specification and in extracellular matrix organization. Cellular
component analysis of the studied genes showed extracellular region, extracellular space, proteinaceous

extracellular matrix and extracellular matrix enrichment.

3.3. OA Specific Methylation Biosignature through AutoML

In order to construct a specific model for OA, B-values were uploaded to JADBIo. The original dataset (151 OA
tissues and 216 healthy tissues) was automatically and randomly split into a training dataset of 108 OA and 144
healthy tissues and a validation dataset of 43 OA and 65 healthy tissues. An analysis of the training dataset of
29,585 gene array features produced three equivalent signatures containing 4 features each via a classification
random forests algorithm (https://app.jadbio.com/share/2fee0023-8330-4b54-ab0c-ddbaf032b506, accessed on 1
October 2021). Two of them were protein-coding genes, namely CASD1 and STOML1, two were IncCRNA genes,
namely, LINC01350 and RP11-272L.13.3, and one was an RNA gene, namely, CARMAL. The last was the RP11-
515E23.2 gene (Table 2). Common features between models were RP11-515E23.2, LINC01350 and CASD1. All

genes showed the down-regulation of methylation in OA cartilage in relation to healthy tissues. In discriminating OA

against healthy tissues, signatures reached an AUC of 0.978 (0.942-1.000) and average precision of 0.986
(0.962-1.000) (Figure 4A). Upon validation, the model showed an AUC of 0.990-0.995 and an average precision
of 0.994-0.997 (Figure 4A), verifying the stability and accuracy of its estimation. Performance validation and

inspection are depicted in Figure 4B,C.
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Figure 4. OA-specific methylation biosignature built using AutoML. (A) ROC curves of training (blue line) and
validation (green line) models. (B) Supervised PCA plot (i.e., only considering the selected relevant biomarkers)
presents separation between OA (blue) and non-OA healthy tissues (green) within the training group. (C) Out-of-
sample probability density plot (i.e., probability predictions when samples were not used for training) depicts
discrete distributions among studied classes of the training group. (D) PCA plot presents separation between OA
(blue) and non-OA healthy tissues (green) within the validation group. Abbreviations: OA = osteoarthritis, ROC =

receiver operating characteristic, PCA = principal component analysis.

Table 2. Differentially methylated genes selected in the OA cartilage-specific signature built using AutoML analysis.

Their biological characteristics and functions revealed by GO analysis as well as their methylation status are

described.
GO— GO— Methylation in
Slg‘:ztet;re ?en: DescriptionPathway GOF—UI:/‘IgtI; cnular Cellular Biological UsnésfeD OAtg‘gfr:::lon
yp Components Process .
Tissues
Golgi
membrane,
Golgi
acetyltransferase apparatus,
L membrane,
CAS1 activity, .
Protein Domain transferase el e
CASD1 . - NA . component metabolic 0 Hypomethylation
Coding  Containing activity,
) of process
1 transferring acyl
roups membrane,
g integral
component
of Golgi
membrane
Long
Intergenic
LINC01350 LncRNA P’:Iootre];n NA NA NA NA NA  Hypomethylation
Coding
RNA 1350
RP11- )
515E23.2 NA NA NA NA NA NA NA Hypomethylation
endosome,
plasma
membrane,
STOML1 AL SR NA rotein bindin el lipid transport 245 Hypomethylation
Coding Like 1 P 9 integral P P ’ yp Y
component
of
membrane

https://encyclopedia.pub/entry/20918 10/19



Tissue-Specific Methylation Biosignatures | Encyclopedia.pub

Methylation in

UniReD OA in Relation
Score to Other
Tissues

GO— GO—
Cellular Biological
Components Process

GO—Molecular
Function

Signature  Gene
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Coronary lilable.
Artery
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272113.3
TUIGT SySTETT armu 1S MVOIVEU T e CaruuTTyuTate TITETanunt Protess. S Tomvit T tares part i protenTomding, is
mainly located in the endosome and plasma membrane and participates in lipid transport (Table 2). For
LINC01350, RP11-515E23.2, CARMAL and RP11-272L13.31, no relevant information was found in the GeneCards

database (Table 2).

Following this, the two protein-coding gene features were analyzed via UniReD using a list of 10 protein-coding
genes that are known to be related to OA pathophysiology, namely, VDR B4 AGC1 B3 |GF-1 38 ADAMTS4 137,
TGF beta 28 MATN3 B2, MmP13 49 cOL2A1 B CcOL11A1 22 and COL9A1 28l Only STOML1 was found to be

associated with OA pathways according to the KEGG pathway identification, reaching a score of 2.5 (Table 2).

| 4. Diabetes

4.1. Differential Methylation Analysis Comparing Pancreatic B-Cells and Other
Tissues

To decipher the methylation landscape of pancreatic (-cells, which could be of value in monitoring diabetes, raw
methylomes of 3 pancreatic B-cell samples were analyzed against 28 other tissues/cell types, including blood,
serum, muscle, adipose, spleen, colon, gastric, liver, skin, etc. using RnBeads. Differential methylation analysis
revealed 65 hypomethylated and 1 hypermethylated genes in B-cells in comparison to other tissues (FDR < 0.05).

A heatmap of the emergent DMGs is presented in Figure 5.
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Figure 5. Differential methylation analysis comparing pancreatic B-cells and other tissues. Gene ontology analysis
of 66 DMGs in the aspects of (A) biological process and (B) molecular function analysis. (C) Heatmap plot of 66
DMGs comparing pancreatic B-cells and other healthy tissues. Abbreviations: DMGs = differentially methylated

genes.
4.2. Functional Analysis of DMGs Comparing Pancreatic B-Cells and Other Tissues

Further, all DMGs identified were subjected to functional analysis. Molecular function analysis showed an
enrichment in the G-protein-coupled receptor activity and signaling pathway, glucose homeostasis, the negative
regulation of lipid catabolic process and the activation of protein kinase B activity (Figure 5). Reactome pathway

analysis did not lead to any pathways.
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4.3. Pancreatic B-Cell Specific Methylation Biosighature Using AutoML

To construct a pancreatic 3-cell-specific methylation biosignature, methylome B-values of 3 (-cell samples and 28
other tissue/cell samples were analyzed through JADBIio. From the 28,021 CG feature dataset, AutoML analysis
produce a biosignature containing 4 features via a support vector machine algorithm
(https://app.jadbio.com/share/7ebbc7c3-b861-41af-8a39-88202756d609, accesed on 1 October 2021). Two of
them were protein-coding genes, namely, TXNRD3 and LENGS8, one was a snoRNA gene, namely, SCARNAG, and
one an LncRNA gene, namely, AC008741.1 (Table 3). All genes showed decreased methylation in pancreatic 3-
cells in relation to other tissues/cells. The signature’s performance in discriminating p-cells reached an AUC of
0.984 (0.909-1.000) and an average precision of 0.995 (0.975-1.000) (Figure 6A). The model's performance and

inspection are depicted in Figure 6B,C.
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Figure 6. Pancreatic [-cell-specific methylation biosignature built using AutoML. (A) ROC curve of model. (B)
UMAP plot shows separation between pancreatic (3-cells (blue) and other tissues (green). (C) Supervised PCA plot
(i.e., only considering the selected relevant biomarkers) presents separation between pancreatic (-cells (blue) and
other tissues (green). (D) Out-of-sample probability density plot (i.e., probability predictions when samples were not
used for training) depicts discrete distributions among studied classes. Abbreviations: ROC = receiver operating

characteristic, PCA = principal component analysis, UMAP = uniform manifold approximation and projection.
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Table 3. Differentially methylated genes selected in the pancreatic B-cell-specific signature built using AutoML
analysis comparing methylomes of B-cells and other healthy tissues. Their biological characteristics and functions

revealed by GO analysis as well as their methylation status are described.

Methylation in

GO— Pancreatic B
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folate metabolism organism
. . ) reductase nucleoplasm,
Protein Thioredoxin and mechanisms activity, S — development,
TXNRD3 . Reductase of CFTR ' ytop ! spermatogenesis, S5 Hypomethylation
Coding - electron endoplasmic
3 activation by S- . electron transport
. . transfer reticulum, .
nitrosoglutathione . . chain, cell
activity, protein cytosol

differentiation

disulfide
oxidoreductase
activity
Novel
Transcript,
ACO008741.1  IncRNA Antisense NA NA NA NA NA Hypomethylation
To
ZKSCAN2
Leukocyte
Protein Receptor - .
LEN . NA | NA NA H hyl
G8 Gading Cluster protein binding nucleus ypomethylation
Member

Abbreviations: AutoML: automated machine learning, GO: gene ontology, NA: non-available.

4.4. Biological Relevance of Genes Selected in the B-Cell-Specific Methylation
Biosignature

GO analysis revealed that SCARNAG is a nucleolus component and is involved in RNA processing. TXNRD3 has a
nucleotide binding function, thioredoxin disulfide reductase activity, electron transfer activity and others (Table 3). It
is a component of nucleoplasm and cytoplasm and is involved in many biological processes, such as cell
differentiation. LENGS8 participates in protein binding in the nucleus. For AC008741.1 no information about its

molecular function, cellular component and biological process was available in the GeneCards database (Table 3).

Finally, the two protein-coding gene features were analyzed with UniReD, using a list of 10 protein-coding genes
that are known to be related to diabetes pathophysiology—SLC2A2 44l |App 1451 GSk 48] |NSR [1 jRS1 [48])
PPARG 23 kcny11 BY ABccs Bl TCF7L2 32 and FTO B3l Only TXNRD3 was found to be associated with

diabetes-related pathways according to the KEGG pathway identification, reaching a score of 5.5 (Table 3).

https://encyclopedia.pub/entry/20918 14/19



Tissue-Specific Methylation Biosignatures | Encyclopedia.pub

References

1. Kulis, M.; Esteller, M. 2-DNA Methylation and Cancer. In Advances in Genetics; Herceg, Z.,
Ushijima, T., Eds.; Academic Press: Cambridge, MA, USA, 2010; Volume 70, pp. 27-56.

2. Richardson, B. DNA methylation and autoimmune disease. Clin. Immunol. 2003, 109, 72—79.

3. Bansal, A.; Pinney, S.E. DNA methylation and its role in the pathogenesis of diabetes. Pediatr.
Diabetes 2017, 18, 167-177.

4. Ammal Kaidery, N.; Tarannum, S.; Thomas, B. Epigenetic Landscape of Parkinson’s Disease:
Emerging Role in Disease Mechanisms and Therapeutic Modalities. Neurotherapeutics 2013, 10,
698-708.

5. Roy, D.; Tiirikainen, M. Diagnostic Power of DNA Methylation Classifiers for Early Detection of
Cancer. Trends Cancer 2020, 6, 78-81.

6. Klughammer, J.; Kiesel, B.; Roetzer, T.; Fortelny, N.; Nemc, A.; Nenning, K.-H.; Furtner, J.;
Sheffield, N.C.; Datlinger, P.; Peter, N.; et al. The DNA methylation landscape of glioblastoma
disease progression shows extensive heterogeneity in time and space. Nat. Med. 2018, 24,
1611-1624.

7. Henderson-Smith, A.; Fisch, K.M.; Hua, J.; Liu, G.; Ricciardelli, E.; Jepsen, K.; Huentelman, M.;
Stalberg, G.; Edland, S.D.; Scherzer, C.R.; et al. DNA methylation changes associated with
Parkinson’s disease progression: Outcomes from the first longitudinal genome-wide methylation
analysis in blood. Epigenetics 2019, 14, 365-382.

8. Lu, A.T.; Narayan, P.; Grant, M.J.; Langfelder, P.; Wang, N.; Kwak, S.; Wilkinson, H.; Chen, R.Z,;
Chen, J.; Bawden, C.S.; et al. DNA methylation study of Huntington’s disease and motor
progression in patients and in animal models. Nat. Commun. 2020, 11, 4529.

9. Goud Alladi, C.; Etain, B.; Bellivier, F.; Marie-Claire, C. DNA Methylation as a Biomarker of
Treatment Response Variability in Serious Mental llinesses: A Systematic Review Focused on
Bipolar Disorder, Schizophrenia, and Major Depressive Disorder. Int. J. Mol. Sci. 2018, 19, 3026.

10. Marie-Claire, C.; Lejeune, F.X.; Mundwiller, E.; Ulveling, D.; Moszer, I.; Bellivier, F.; Etain, B. A
DNA methylation signature discriminates between excellent and non-response to lithium in
patients with bipolar disorder type 1. Sci. Rep. 2020, 10, 122309.

11. Sigin, V.O.; Kalinkin, A.l.; Kuznetsova, E.B.; Simonova, O.A.; Chesnokova, G.G.; Litviakov, N.V,;
Slonimskaya, E.M.; Tsyganov, M.M.; Ibragimova, M.K.; Volodin, I.V.; et al. DNA methylation
markers panel can improve prediction of response to neoadjuvant chemotherapy in luminal B
breast cancer. Sci. Rep. 2020, 10, 9239.

https://encyclopedia.pub/entry/20918 15/19



Tissue-Specific Methylation Biosignatures | Encyclopedia.pub

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Chatzaki, E.; Tsamardinos, . Somatic copy number aberrations detected in circulating tumor DNA
can hold diagnostic value for early detection of hepatocellular carcinoma. EBioMedicine 2020, 57,
102851.

Lai, H.; Huang, H.; Keshavjee, K.; Guergachi, A.; Gao, X. Predictive models for diabetes mellitus
using machine learning techniques. BMC Endocr. Disord. 2019, 19, 101.

Cai, Z.; Xu, D.; Zhang, Q.; Zhang, J.; Ngai, S.M.; Shao, J. Classification of lung cancer using
ensemble-based feature selection and machine learning methods. Mol. Biosyst. 2015, 11, 791—
800.

Aref-Eshghi, E.; Schenkel, L.C.; Ainsworth, P.; Lin, H.; Rodenhiser, D.I.; Cutz, J.-C.; Sadikovic, B.
Genomic DNA Methylation-Derived Algorithm Enables Accurate Detection of Malignant Prostate
Tissues. Front Oncol. 2018, 8, 100.

Panagopoulou, M.; Karaglani, M.; Manolopoulos, V.G.; lliopoulos, I.; Tsamardinos, I.; Chatzaki, E.
Deciphering the Methylation Landscape in Breast Cancer: Diagnostic and Prognostic
Biosignatures through Automated Machine Learning. Cancers 2021, 13, 1677.

Karaglani, M.; Gourlia, K.; Tsamardinos, |.; Chatzaki, E. Accurate Blood-Based Diagnostic
Biosignatures for Alzheimer’s Disease via Automated Machine Learning. J. Clin. Med. 2020, 9,
3016.

Dogan, M.V.; Grumbach, I.M.; Michaelson, J.J.; Philibert, R.A. Integrated genetic and epigenetic
prediction of coronary heart disease in the Framingham Heart Study. PLoS ONE 2018, 13,
e0190549.

Tiulpin, A.; Klein, S.; Bierma-Zeinstra, S.M.A.; Thevenot, J.; Rahtu, E.; Meurs, J.v.; Oei, E.H.G,;
Saarakkala, S. Multimodal Machine Learning-based Knee Osteoarthritis Progression Prediction
from Plain Radiographs and Clinical Data. Sci. Rep. 2019, 9, 20038.

Enriquez, J.G.; Martinez-Rojas, A.; Lizcano, D.; Jiménez-Ramirez, A. A Unified Model
Representation of Machine Learning Knowledge. J. Web Eng. 2020, 19, 2.

Tsamardinos, |.; Charonyktakis, P.; Lakiotaki, K.; Borboudakis, G.; Zenklusen, J.C.; Juhl, H.;
Chatzaki, E.; Lagani, V. Just Add Data: Automated Predictive Modeling and BioSignature
Discovery. bioRxiv, 2020; in press.

Moss, J.; Magenheim, J.; Neiman, D.; Zemmour, H.; Loyfer, N.; Korach, A.; Samet, Y.; Maoz, M.;
Druid, H.; Arner, P.; et al. Comprehensive human cell-type methylation atlas reveals origins of
circulating cell-free DNA in health and disease. Nature Commun. 2018, 9, 5068.

Liu, X.; Ren, J.; Luo, N.; Guo, H.; Zheng, Y.; Li, J.; Tang, F.; Wen, L.; Peng, J. Comprehensive
DNA methylation analysis of tissue of origin of plasma cell-free DNA by methylated CpG tandem
amplification and sequencing (MCTA-Seq). Clin. Epigenetics 2019, 11, 93.

https://encyclopedia.pub/entry/20918 16/19



Tissue-Specific Methylation Biosignatures | Encyclopedia.pub

24,

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

Panagopoulou, M.; Karaglani, M.; Balgkouranidou, I.; Pantazi, C.; Kolios, G.; Kakolyris, S.;
Chatzaki, E. Circulating cell-free DNA release in vitro: Kinetics, size profiling, and cancer-related
gene methylation. J. Cell. Physiol. 2019, 234, 14079-14089.

Narod, S.A.; Salmena, L. BRCA1 and BRCA2 mutations and breast cancer. Discov. Med. 2011,
12, 445-453.

Li, M.; Wang, C.; Yu, B.; Zhang, X.; Shi, F; Liu, X. Diagnostic value of RASSF1A methylation for
breast cancer: A meta-analysis. Biosci. Rep. 2019, 39, BSR20190923.

Dustin, D.; Gu, G.; Fuqua, S.A.W. ESR1 mutations in breast cancer. Cancer 2019, 125, 3714—
3728.

Li, X.; Chen, X.; Wen, L.; Wang, Y.; Chen, B.; Xue, Y.; Guo, L.; Liao, N. Impact of TP53 mutations
in breast cancer: Clinicopathological features and prognosisimpact of TP53 mutations in breast
CA. Thorac. Cancer 2020, 11, 1861-1868.

Arsenic, R.; Lehmann, A.; Budczies, J.; Koch, I.; Prinzler, J.; Kleine-Tebbe, A.; Schewe, C.; Loibl,
S.; Dietel, M.; Denkert, C. Analysis of PIK3CA mutations in breast cancer subtypes. Appl.
Immunohistochem. Mol. Morphol. AIMM 2014, 22, 50-56.

Zhang, Y.; Ye, L.; Tan, Y.; Sun, P.; Ji, K.; Jiang, W.G. Expression of breast cancer metastasis
suppressor-1, BRMS-1, in human breast cancer and the biological impact of BRMS-1 on the
migration of breast cancer cells. Anticancer. Res. 2014, 34, 1417-1426.

Corso, G.; Veronesi, P.; Sacchini, V.; Galimberti, V. Prognosis and outcome in CDH1-mutant
lobular breast cancer. Eur. J. Cancer Prev. 2018, 27, 237-238.

Chimonidou, M.; Tzitzira, A.; Strati, A.; Sotiropoulou, G.; Sfikas, C.; Malamos, N.; Georgoulias, V.;
Lianidou, E. CST6 promoter methylation in circulating cell-free DNA of breast cancer patients.
Clin. Biochem. 2013, 46, 235-240.

Carbognin, L.; Miglietta, F.; Paris, I.; Dieci, M.V. Prognostic and Predictive Implications of PTEN in
Breast Cancer: Unfulfilled Promises but Intriguing Perspectives. Cancers 2019, 11, 1401.

Keen, R.W.; Hart, D.J.; Lanchbury, J.S.; Spector, T.D. Association of early osteoarthritis of the
knee with a Taq | polymorphism of the vitamin D receptor gene. Arthritis Rheum. 1997, 40, 1444—
1449,

Gleghorn, L.; Ramesar, R.; Beighton, P.; Wallis, G. A mutation in the variable repeat region of the
aggrecan gene (AGC1) causes a form of spondyloepiphyseal dysplasia associated with severe,
premature osteoarthritis. Am. J. Hum. Genet. 2005, 77, 484—490.

Wei, F.Y.; Lee, J.K.; Weli, L.; Qu, F.; Zhang, J.Z. Correlation of insulin-like growth factor 1 and
osteoarthritic cartilage degradation: A spontaneous osteoarthritis in guinea-pig. Eur. Rev. Med.
Pharmacol. Sci. 2017, 21, 4493-4500.

https://encyclopedia.pub/entry/20918 17/19



Tissue-Specific Methylation Biosignatures | Encyclopedia.pub

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

Verma, P.; Dalal, K. ADAMTS-4 and ADAMTS-5: Key enzymes in osteoarthritis. J. Cell. Biochem.
2011, 112, 3507-3514.

Shen, J.; Li, S.; Chen, D. TGF-f3 signaling and the development of osteoarthritis. Bone Res. 2014,
2, 14002.

Pullig, O.; Tagariello, A.; Schweizer, A.; Swoboda, B.; Schaller, P.; Winterpacht, A. MATN3
(matrilin-3) sequence variation (pT303M) is a risk factor for osteoarthritis of the CMCL1 joint of the
hand, but not for knee osteoarthritis. Ann. Rheum. Dis. 2007, 66, 279-280.

Wang, M.; Sampson, E.R.; Jin, H.; Li, J.; Ke, Q.H.; Im, H.-J.; Chen, D. MMP13 is a critical target
gene during the progression of osteoarthritis. Arthritis Res. Ther. 2013, 15, R5.

Vikkula, M.; Palotie, A.; Ritvaniemi, P.; Ott, J.; Ala-Kokko, L.; Sievers, U.; Aho, K.; Peltonen, L.
Early-onset osteoarthritis linked to the type ii procollagen gene. detailed clinical phenotype and
further analyses of the gene. Arthritis Rheum. 1993, 36, 401-409.

Raine, E.V.; Dodd, A.W.; Reynard, L.N.; Loughlin, J. Allelic expression analysis of the
osteoarthritis susceptibility gene COL11A1 in human joint tissues. BMC Musculoskelet. Disord.
2013, 14, 85.

Mustafa, Z.; Chapman, K.; Irven, C.; Carr, A.J.; Clipsham, K.; Chitnavis, J.; Sinsheimer, J.S.;
Bloomfield, V.A.; McCartney, M.; Cox, O.; et al. Linkage analysis of candidate genes as
susceptibility loci for osteoarthritis—Suggestive linkage of COL9A1 to female hip osteoarthritis.
Rheumatology 2000, 39, 299-306.

Laukkanen, O.; Lindstrém, J.; Eriksson, J.; Valle, T.T.; Hamalainen, H.; llanne-Parikka, P.;
Keindnen-Kiukaanniemi, S.; Tuomilehto, J.; Uusitupa, M.; Laakso, M. Polymorphisms in the
SLC2A2 (GLUTZ2) gene are associated with the conversion from impaired glucose tolerance to
type 2 diabetes: The Finnish Diabetes Prevention Study. Diabetes 2005, 54, 2256-2260.

Kanatsuka, A.; Kou, S.; Makino, H. IAPP/amylin and (3-cell failure: Implication of the risk factors of
type 2 diabetes. Diabetol. Int. 2018, 9, 143-157.

Henriksen, E.J.; Dokken, B.B. Role of glycogen synthase kinase-3 in insulin resistance and type 2
diabetes. Curr. Drug Targets 2006, 7, 1435-1441.

Kazemi, B.; Seyed, N.; Moslemi, E.; Bandehpour, M.; Bikhof Torbati, M.; Saadat, N.; Eidi, A.;
Ghayoor, E.; Azizi, F. Insulin receptor gene mutations in iranian patients with type Il diabetes
mellitus. Iran. Biomed. J. 2009, 13, 161-168.

Zeggini, E.; Parkinson, J.; Halford, S.; Owen, K.R.; Frayling, T.M.; Walker, M.; Hitman, G.A.; Levy,
J.C.; Sampson, M.J.; Feskens, E.J.M.; et al. Association Studies of Insulin Receptor Substrate 1
Gene (IRS1) Variants in Type 2 Diabetes Samples Enriched for Family History and Early Age of
Onset. Diabetes 2004, 53, 3319-3322.

https://encyclopedia.pub/entry/20918 18/19



Tissue-Specific Methylation Biosignatures | Encyclopedia.pub

49.

50.

51.

52.

53.

Stumvoll, M.; Haring, H. The Peroxisome Proliferator-Activated Receptor-y2 Prol12Ala
Polymorphism. Diabetes 2002, 51, 2341-2347.

Karaglani, M.; Ragia, G.; Panagopoulou, M.; Balgkouranidou, I.; Nena, E.; Kolios, G.; Papanas,
N.; Manolopoulos, V.G.; Chatzaki, E. Search for Pharmacoepigenetic Correlations in Type 2
Diabetes Under Sulfonylurea Treatment. Exp. Clin. Endocrinol. Diabetes 2019, 127, 226—-233.

Zhou, X.; Chen, C.; Yin, D.; Zhao, F.; Bao, Z.; Zhao, Y.; Wang, X.; Li, W.; Wang, T.; Jin, Y.; etal. A
Variation in the ABCC8 Gene Is Associated with Type 2 Diabetes Mellitus and Repaglinide
Efficacy in Chinese Type 2 Diabetes Mellitus Patients. Intern. Med. 2019, 58, 2341-2347.

Hattersley, A.T. Prime suspect: The TCF7L2 gene and type 2 diabetes risk. J. Clin. Investig. 2007,
117, 2077-2079.

Chauhan, G.; Tabassum, R.; Mahajan, A.; Dwivedi, O.P.; Mahendran, Y.; Kaur, I.; Nigam, S.;
Dubey, H.; Varma, B.; Madhu, S.V,; et al. Common variants of FTO and the risk of obesity and
type 2 diabetes in Indians. J. Hum. Genet. 2011, 56, 720-726.

Retrieved from https://encyclopedia.pub/entry/history/show/50356

https://encyclopedia.pub/entry/20918 19/19



