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Tissue-specific gene methylation events are key to the pathogenesis of several diseases and can be utilized for

diagnosis and monitoring. By employing a data-driven approach, researchers establish specific methylation
disease profiles to be applied in clinical practice and to understand human pathology. 
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1. Introduction

Aberrant gene methylation contributes to the pathophysiology of human diseases, such as cancer , autoimmune

disorders  and diabetes . The detection of alterations in DNA methylation, either on tissues or in liquid biopsies,

has been involved in the initiation , progression  and response to the treatment of several diseases 

 and, thus, it is thought to hold valuable information for their clinical management. Genome-wide methylation

analyses enable the study of a vast number of CpG sites and produce high-dimensional datasets that can be

exploited for a deeper understanding of the contribution of methylation in human pathology. They also offer the

opportunity to build specific biosignatures for personalized clinical solutions of clinical importance.

In parallel to the rapid accumulation of multiple high-throughput omics data, machine learning (ML) approaches

have been introduced to enable their exploitation. ML uses a variety of algorithms that perform intelligent

predictions and is highly applicable in biomarker discovery . Specifically, ML applied to different type of omics

datasets has been used for diagnosis or classification and prognosis in various cancers , neurological

diseases , coronary artery disease , osteoarthritis  and diabetes . However, developing an ML approach

entails a lot of effort to select and configure the appropriate algorithm to process the data to learn from, among

other things . To this end, automated tools for ML (AutoML) have recently become available∙ they promise to

democratize data analysis to non-experts, drastically increase productivity, improve the replicability of the statistical

analysis, facilitate the interpretation of results, and shield against common methodological analysis pitfalls, such as

overfitting . Bioinformatic analysis combined with AutoML analysis of big omics datasets is able to extract

knowledge and predictive models that can be used in personalized clinical decisions. To the best of their

knowledge, only a few studies focusing on cancer have applied ML to methylation data analysis .

Cell-free DNA fragments circulate in the biological fluids of healthy and diseased individuals. The cellular release

mechanisms of circulating cell-free DNA (ccfDNA) include apoptosis, necrosis and active release from viable cells.
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Recent studies have shown that multiple tissues contribute to the ccfDNA mixture of healthy individuals, while in

disease, it is enriched also from pathological tissues . ccfDNA fragments carry identical methylation footprints

to their tissue of origin, serving as valuable liquid biopsy material, as they can dynamically mirror changes

throughout the pathophysiological process . Tracing in ccfDNA the methylation footprints of a tissue presents an

unprecedented opportunity for early diagnosis and monitoring.

To tackle this major challenge in biomarker discovery, researchers established an in silico pipeline based on high-

throughput microarray methylation datasets to identify disease/tissue specific methylation fingerprints. Three

pathological entities of major burden, i.e., one malignancy (breast cancer, BrCa), one inflammatory (osteoarthritis,

OA) and one metabolic (diabetes) were selected as use cases in the approach. Instead of the comparison, adopted

in most studies, of a pathological tissue to the respective healthy one (for example breast cancer tissue vs. normal

breast), here they chose to compare methylomes from a tissue or cell type related to a specific pathology to the

bulk of methylomes from other healthy tissues. Differential analysis revealed specific differentially methylated

genes (DMGs) which were then subjected to functional analysis to unravel epigenetically regulated pathways in

each pathology. Following this, AutoML technology, specially designed for analyzing high-dimensional biological

datasets, was applied to build tissue-specific methylation biosignatures, validated also in ccfDNA. Selected

features were additionally studied using a text mining bioinformatic tool to reveal their biological associations.

2. Breast Cancer

2.1. Differential Methylation Analysis Comparing BrCa and Healthy Tissues

In order to identify differentially methylated genes in a comparison between BrCa tumors and healthy tissues, raw

methylome data from 218 BrCa (primary and metastatic) tumors and 193 healthy tissues, including healthy breast,

blood, liver, muscle, colon, gastric, lung and adipose, were subjected to analysis using RnBeads. In total, 19,248

DMGs (false discovery rate (FDR) < 0.05) emerged. Among those, 8820 were found to be hypomethylated, while

10,428 showed hypermethylation in BrCa in relation to healthy tissues. A heatmap visualization of DMGs is

presented in Figure 1D. Further, DMGs were ranked based on FDR, and the 400 top-ranking genes were chosen

for functional analysis. Of these 400 DMGs, 171 were hypomethylated and the remaining 229 were

hypermethylated in BrCa in relation to healthy tissues.

[22][23]

[24]
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Figure 1. Differential methylation analysis comparing BrCa and healthy tissues. Gene ontology analysis of the top

400 DMGs in the aspects of (A) biological process, (B) cellular component and (C) molecular function analysis. (D)

Heatmap plot of top 100 DMGs comparing BrCa and healthy tissues. Abbreviations: BrCa = breast cancer, DMGs =

differentially methylated genes.

2.2. Functional Analysis of DMGs Comparing BrCa and Healthy Tissues

Gene ontology analysis was carried out using the DAVID tool (Figure 1A–C). In molecular function analysis, the

most enriched functions were G-protein-coupled receptor activity, sequence-specific DNA binding, transcriptional

activator activity and RNA polymerase II core promoter proximal region sequence-specific binding. In biological

process enrichment analysis, DMGs were found to participate mainly in G-protein-coupled receptor signaling

pathways, the positive regulation of transcription from RNA polymerase II promoter, transcription from RNA and the

polymerase II promoter regulation of transcription from RNA polymerase II promoter. Finally, cellular component

analysis showed mainly a plasma membrane enrichment of the studied genes. Reactome analysis via
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ConsensusPathDB mainly revealed enrichment in sensory perception, the genetic transcription pathway, RNA

polymerase II transcription and gene expression.

2.3. BrCa-Specific Methylation Biosignature through AutoML

β-values produced by RnBeads were analyzed using JADBio in order to construct an accurate model specific for

tracing BrCa. The original dataset (218 BrCa tissues and 193 healthy tissues) was automatically and randomly split

into a training dataset of 151 BrCa and 131 healthy tissues and a validation dataset of 66 BrCa and 55 healthy

tissues. Analysis of the training dataset of 29,703 gene array features produced one signature containing 5

features via a support vector machines (SVM) algorithm (https://app.jadbio.com/share/4fd50c38-d0a1-4f28-96c9-

480b29b4a3e2, accessed on 1 October 2021). Three of them were protein-coding genes, namely, CCDC181,

HIST2H3PS2 and CFTR, and two were RNA genes, namely, RUVBL1-AS1 and AL161908.1 (Table 1). All genes

presented increased methylation in BrCa in relation to healthy tissues/cells. In discriminating BrCa against healthy

tissues, this signature reached an area under the curve (AUC) of 0.987 (0.963–1.000) and an average precision of

0.987 (0.955–1.000) (Figure 2A). Upon validation in the test dataset, the model showed an AUC and an average

precision of 0.995 (Figure 2A), verifying the model’s performance metrics. The performance and inspection results

are depicted in Figure 2B–D.
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Figure 2. BrCa-specific methylation biosignature built using AutoML. (A) ROC curves of training (blue line) and

validation (green line) models. (B) Supervised PCA plot (i.e., only considering the selected relevant biomarkers)

presents separation between BrCa (blue) and healthy tissues (green) within the training group. (C) Out-of-sample

probability density plot (i.e., probability predictions when samples were not used for training) depicts discrete

distributions among studied classes of the training group. (D) PCA plot presents separation between BrCa (blue)

and healthy tissues (green) within the validation group. (E) ROC curves of training (blue line) and external

validation (green line) models and (F) PCA plot presents separation between BrCa ccfDNA (blue) and healthy

ccfDNA (green) within the external validation group. Abbreviations: BrCa = breast cancer, ROC = receiver

operating characteristic, PCA = principal component analysis.



Tissue-Specific Methylation Biosignatures | Encyclopedia.pub

https://encyclopedia.pub/entry/20918 6/19

Table 1. Differentially methylated genes selected in the BrCa-specific signature built using AutoML analysis. Their

biological characteristics and functions revealed by GO analysis as well as their methylation status are described.

Abbreviations: BrCa: breast cancer, AutoML: automated machine Learning, GO: gene Ontology, NA: non-available.

2.4. Validation and Applicability of BrCa-Specific Methylation Biosignature on
ccfDNA

To validate the discrimination performance of the BrCa-specific five-feature biosignature on ccfDNA and its

applicability to liquid biopsy, researchers applied it to an external independent dataset of three BrCa ccfDNA

samples and five ccfDNA samples from age-matched healthy women. The analysis revealed the model’s AUC and

an average precision of 1.000 (Figure 2E,F).

2.5. Biological Relevance of Genes Selected in the BrCa-Specific Methylation
Biosignature

Feature selection performed via ML identifies a minimum subset of features bearing the maximal classifying ability

between groups. In tasks such as the one addressed here, i.e., to build a tissue-specific methylation biosignature, it

is interesting to know if the DMGs included in the model have an established role in the related pathophysiology as

revealed by their biological characteristics. All five DMGs of the BrCa biosignature were subjected to GO analysis

Signature
Genes

Gene
Type Description Pathway GO—Molecular

Function
GO—Cellular
Components

GO—
Biological
Process

UniReD
Score

Methylation in
BrCa in Relation

to Healthy
Tissues

CCDC181 Protein
Coding

Coiled-Coil
Domain

Containing 181
NA

microtubule
binding

manchette,
cytoplasm,

cytoskeleton,
microtubule,

cilium

NA 5 Hypermethylation

HIST2H3PS2 Protein
Coding

Histone Cluster
2, H3,

Pseudogene 2
NA

DNA binding,
protein

heterodimerization
activity

Nucleus,
Chromosome

NA 1 Hypermethylation

RUVBL1-
AS1

RNA
Gene

RUVBL1
Antisense RNA

1
NA NA NA NA NA Hypermethylation

CFTR Protein
Coding

CF
Transmembrane

Conductance
Regulator

CDK-mediated
phosphorylation
and removal of
Cdc6, bacterial
infections in CF

airways,
regulation of

CFTR activity,
salivary

secretion

nucleotide
binding, chloride
channel activity,

intracellularly
ATP-gated

chloride channel
activity

nucleus,
cytoplasm,
lysosomal

membrane,
endsome,

early
endsome

cholesterol
biosynthetic

process,
ion

transport,
chloride

transport,
vesicle
docking

involved in
exocytes

7 Hypermethylation

AL161908.1 RNA
Gene

Novel
Transcript,

Antisense To
LIM1B

NA NA NA NA NA Hypermethylation
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using the GeneCards database (Table 1). CCDC181’s molecular function is related to microtubule binding, while it

is mainly found in the manchette and cytoplasm. HIST2H3PS2’s molecular function is associated with DNA binding

and protein heterodimerization activity and is mainly found in nucleus and on chromosome. CFTR’s molecular

function is related, among other things, to nucleotide binding and chloride channel activity, and it is located in the

nucleus, cytoplasm and in other cellular components and participates in cholesterol biosynthesis, ion and chloride

transport among other things. For RUVBL1-AS1 and AL161908.1, no information was found in the GeneCards

database (Table 1).

Furthermore, in order to examine if the protein products of the three protein-encoding DMGs included in the BrCa-

specific biosignature were somehow implicated in BrCa pathophysiology, researchers analyzed the identified

genes, using a literature mining tool UniReD, which predicts functional associations between proteins. As

previously , for this analysis, they used the following list of 10 protein-coding genes with an established role in

BrCa pathophysiology, namely, BRCA1 , BRCA2 , RASSF1 , ESR1 , TP53 , PIK3CA , BRMS1 ,

CDH1 , CST6  and PTEN . All genes were found to be associated with breast cancer pathways according

to the KEGG pathway identification. CFTR reached a score of 7, while CCDC181 reached a score of 5 and

HIST2H3PS2 a score of 1, showing fewer known associations (Table 1).

3. Osteoarhtitis

3.1. Differential Methylation Analysis Comparing OA and Healthy Tissues

Methylomes of OA cartilage tissues were analyzed in comparison to healthy tissues, including healthy cartilages,

breast, blood, liver, muscle, colon, gastric, lung and adipose. Raw data from 151 OA cartilages tissues and 216

healthy tissues were subjected to RnBeads for differential methylation analysis and 18,413 DMGs (FDR < 0.05)

emerged. Among those, 12,400 DMGs were found to be hypomethylated, while 6013 were found to be

hypermethylated in OA in relation to healthy tissues. A heatmap of DMGs is presented in Figure 3. Further, the 400

top-ranking DMGs based on FDR were chosen for functional analysis. Of these, 354 were hypomethylated, and the

remaining 56 were hypermethylated in OA in relation to healthy tissues.

[16]

[25] [25] [26] [27] [28] [29] [30]

[31] [32] [33]



Tissue-Specific Methylation Biosignatures | Encyclopedia.pub

https://encyclopedia.pub/entry/20918 8/19

Figure 3. Differential methylation analysis comparing OA and healthy tissues. Gene ontology analysis of top 400

DMGs in the aspects of (A) biological process, (B) cellular component and (C) molecular function analysis. (D)

Heatmap plot of top 100 DMGs comparing OA and healthy tissues. Abbreviations: OA = osteoarthritis, DMGs =

differentially methylated genes.

3.2. Functional Analysis of DMGs Comparing OA and Healthy Tissues

Gene ontology analysis of the 400 DMGs was conducted using the DAVID tool (Figure 3A–C). Molecular function

analysis showed enrichment in sequence-specific DNA binding, insulin-like growth factor binding, integrin binding,

heparin binding and collagen binding. Regarding biological process enrichment analysis, DMGs were found to
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participate mainly in anterior/posterior pattern specification and in extracellular matrix organization. Cellular

component analysis of the studied genes showed extracellular region, extracellular space, proteinaceous

extracellular matrix and extracellular matrix enrichment.

3.3. OA Specific Methylation Biosignature through AutoML

In order to construct a specific model for OA, β-values were uploaded to JADBio. The original dataset (151 OA

tissues and 216 healthy tissues) was automatically and randomly split into a training dataset of 108 OA and 144

healthy tissues and a validation dataset of 43 OA and 65 healthy tissues. An analysis of the training dataset of

29,585 gene array features produced three equivalent signatures containing 4 features each via a classification

random forests algorithm (https://app.jadbio.com/share/2fee0023-8330-4b54-ab0c-ddbaf032b506, accessed on 1

October 2021). Two of them were protein-coding genes, namely CASD1 and STOML1, two were lncRNA genes,

namely, LINC01350 and RP11-272L13.3, and one was an RNA gene, namely, CARMAL. The last was the RP11-

515E23.2 gene (Table 2). Common features between models were RP11-515E23.2, LINC01350 and CASD1. All

genes showed the down-regulation of methylation in OA cartilage in relation to healthy tissues. In discriminating OA

against healthy tissues, signatures reached an AUC of 0.978 (0.942–1.000) and average precision of 0.986

(0.962–1.000) (Figure 4A). Upon validation, the model showed an AUC of 0.990–0.995 and an average precision

of 0.994–0.997 (Figure 4A), verifying the stability and accuracy of its estimation. Performance validation and

inspection are depicted in Figure 4B,C.
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Figure 4. OA-specific methylation biosignature built using AutoML. (A) ROC curves of training (blue line) and

validation (green line) models. (B) Supervised PCA plot (i.e., only considering the selected relevant biomarkers)

presents separation between OA (blue) and non-OA healthy tissues (green) within the training group. (C) Out-of-

sample probability density plot (i.e., probability predictions when samples were not used for training) depicts

discrete distributions among studied classes of the training group. (D) PCA plot presents separation between OA

(blue) and non-OA healthy tissues (green) within the validation group. Abbreviations: OA = osteoarthritis, ROC =

receiver operating characteristic, PCA = principal component analysis.

Table 2. Differentially methylated genes selected in the OA cartilage-specific signature built using AutoML analysis.

Their biological characteristics and functions revealed by GO analysis as well as their methylation status are

described.

Signature
Genes

Gene
Type DescriptionPathway GO—Molecular

Function

GO—
Cellular

Components

GO—
Biological
Process

UniReD
Score

Methylation in
OA in Relation

to Other
Tissues

CASD1 Protein
Coding

CAS1
Domain

Containing
1

NA

acetyltransferase
activity,

transferase
activity,

transferring acyl
groups

Golgi
membrane,

Golgi
apparatus,
membrane,

integral
component

of
membrane,

integral
component

of Golgi
membrane

Carbohydrate
metabolic
process

0 Hypomethylation

LINC01350 LncRNA

Long
Intergenic

Non-
Protein
Coding

RNA 1350

NA NA NA NA NA Hypomethylation

RP11-
515E23.2 NA NA NA NA NA NA NA Hypomethylation

STOML1 Protein
Coding

Stomatin-
Like 1

NA protein binding

endosome,
plasma

membrane,
membrane,

integral
component

of
membrane

lipid transport 2.5 Hypomethylation
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Abbreviations: OA: osteoarthritis, AutoML: automated machine learning, GO: gene ontology, NA: non-available.

3.4. Biological Relevance of Genes Selected in the OA-Specific Methylation
Biosignature

GO analysis revealed the biological characteristics of the genes included in the assembled models. CASD1

participates in acetyltransferase and transferase activity molecular functions and others, is mainly located in the

Golgi system and is involved in the carbohydrate metabolic process. STOML1 takes part in protein binding, is

mainly located in the endosome and plasma membrane and participates in lipid transport (Table 2). For

LINC01350, RP11-515E23.2, CARMAL and RP11-272L13.31, no relevant information was found in the GeneCards

database (Table 2).

Following this, the two protein-coding gene features were analyzed via UniReD using a list of 10 protein-coding

genes that are known to be related to OA pathophysiology, namely, VDR , AGC1 , IGF-1 , ADAMTS4 ,

TGF beta , MATN3 , MMP13 , COL2A1 , COL11A1  and COL9A1 . Only STOML1 was found to be

associated with OA pathways according to the KEGG pathway identification, reaching a score of 2.5 (Table 2).

4. Diabetes

4.1. Differential Methylation Analysis Comparing Pancreatic β-Cells and Other
Tissues

To decipher the methylation landscape of pancreatic β-cells, which could be of value in monitoring diabetes, raw

methylomes of 3 pancreatic β-cell samples were analyzed against 28 other tissues/cell types, including blood,

serum, muscle, adipose, spleen, colon, gastric, liver, skin, etc. using RnBeads. Differential methylation analysis

revealed 65 hypomethylated and 1 hypermethylated genes in β-cells in comparison to other tissues (FDR < 0.05).

A heatmap of the emergent DMGs is presented in Figure 5.

Signature
Genes

Gene
Type DescriptionPathway GO—Molecular

Function

GO—
Cellular

Components

GO—
Biological
Process

UniReD
Score

Methylation in
OA in Relation

to Other
Tissues

CARMAL RNA
Gene

Coronary
Artery

Disease
Region-
Linked
MFGE8

Regulatory
LncRNA

NA NA NA NA NA Hypomethylation

RP11-
272L13.3 LncRNA NA NA NA NA NA NA Hypomethylation

[34] [35] [36] [37]

[38] [39] [40] [41] [42] [43]
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Figure 5. Differential methylation analysis comparing pancreatic β-cells and other tissues. Gene ontology analysis

of 66 DMGs in the aspects of (A) biological process and (B) molecular function analysis. (C) Heatmap plot of 66

DMGs comparing pancreatic β-cells and other healthy tissues. Abbreviations: DMGs = differentially methylated

genes.

4.2. Functional Analysis of DMGs Comparing Pancreatic β-Cells and Other Tissues

Further, all DMGs identified were subjected to functional analysis. Molecular function analysis showed an

enrichment in the G-protein-coupled receptor activity and signaling pathway, glucose homeostasis, the negative

regulation of lipid catabolic process and the activation of protein kinase B activity (Figure 5). Reactome pathway

analysis did not lead to any pathways.
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4.3. Pancreatic β-Cell Specific Methylation Biosignature Using AutoML

To construct a pancreatic β-cell-specific methylation biosignature, methylome β-values of 3 β-cell samples and 28

other tissue/cell samples were analyzed through JADBio. From the 28,021 CG feature dataset, AutoML analysis

produce a biosignature containing 4 features via a support vector machine algorithm

(https://app.jadbio.com/share/7ebbc7c3-b861-41af-8a39-88202756d609, accesed on 1 October 2021). Two of

them were protein-coding genes, namely, TXNRD3 and LENG8, one was a snoRNA gene, namely, SCARNA6, and

one an LncRNA gene, namely, AC008741.1 (Table 3). All genes showed decreased methylation in pancreatic β-

cells in relation to other tissues/cells. The signature’s performance in discriminating β-cells reached an AUC of

0.984 (0.909–1.000) and an average precision of 0.995 (0.975–1.000) (Figure 6A). The model’s performance and

inspection are depicted in Figure 6B,C.

Figure 6. Pancreatic β-cell-specific methylation biosignature built using AutoML. (A) ROC curve of model. (B)

UMAP plot shows separation between pancreatic β-cells (blue) and other tissues (green). (C) Supervised PCA plot

(i.e., only considering the selected relevant biomarkers) presents separation between pancreatic β-cells (blue) and

other tissues (green). (D) Out-of-sample probability density plot (i.e., probability predictions when samples were not

used for training) depicts discrete distributions among studied classes. Abbreviations: ROC = receiver operating

characteristic, PCA = principal component analysis, UMAP = uniform manifold approximation and projection.
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Table 3. Differentially methylated genes selected in the pancreatic β-cell-specific signature built using AutoML

analysis comparing methylomes of β-cells and other healthy tissues. Their biological characteristics and functions

revealed by GO analysis as well as their methylation status are described.

Abbreviations: AutoML: automated machine learning, GO: gene ontology, NA: non-available.

4.4. Biological Relevance of Genes Selected in the β-Cell-Specific Methylation
Biosignature

GO analysis revealed that SCARNA6 is a nucleolus component and is involved in RNA processing. TXNRD3 has a

nucleotide binding function, thioredoxin disulfide reductase activity, electron transfer activity and others (Table 3). It

is a component of nucleoplasm and cytoplasm and is involved in many biological processes, such as cell

differentiation. LENG8 participates in protein binding in the nucleus. For AC008741.1 no information about its

molecular function, cellular component and biological process was available in the GeneCards database (Table 3).

Finally, the two protein-coding gene features were analyzed with UniReD, using a list of 10 protein-coding genes

that are known to be related to diabetes pathophysiology—SLC2A2 , IAPP , GSK , INSR , IRS1 ,

PPARG , KCNJ11 , ABCC8 , TCF7L2  and FTO . Only TXNRD3 was found to be associated with

diabetes-related pathways according to the KEGG pathway identification, reaching a score of 5.5 (Table 3).

Signature
Genes

Gene
Type Description Pathway

GO—
Molecular
Function

GO—Cellular
Components

GO—Biological
Process

UniReD
Score

Methylation in
Pancreatic β

Cells in
Relation to

Other Healthy
Tissues

SCARNA6 snoRNA

Small Cajal
Body-

Specific
RNA 6

NA NA nucleolus RNA processing ΝA Hypomethylation

TXNRD3 Protein
Coding

Thioredoxin
Reductase

3

folate metabolism
and mechanisms

of CFTR
activation by S-

nitrosoglutathione

nucleotide
binding,

thioredoxin
disulfide

reductase
activity,
electron
transfer

activity, protein
disulfide

oxidoreductase
activity

cell,
nucleoplasm,

cytoplasm,
endoplasmic

reticulum,
cytosol

multicellular
organism

development,
spermatogenesis,
electron transport

chain, cell
differentiation

5.5 Hypomethylation

AC008741.1 lncRNA

Novel
Transcript,
Antisense

To
ZKSCAN2

NA NA NA NA ΝA Hypomethylation

LENG8 Protein
Coding

Leukocyte
Receptor
Cluster
Member

NA protein binding nucleus NA NA Hypomethylation

[44] [45] [46] [47] [48]

[49] [50] [51] [52] [53]
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