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Infrared Small-Target Detection (ISTD) is an important component of infrared search and tracking, aiming to exploit

the thermal radiation difference between a target and its background to achieve long-range target detection.

According to the definition by the Society of Photo-Optical Instrumentation Engineers (SPIE), small targets typically

refers to objects in a 256 × 256 image with an area of fewer than 80 pixels, accounting for approximately 0.12% of

the total image area.
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1. Introduction

Infrared Small-Target Detection (ISTD) is an important component of infrared search and tracking, aiming to exploit

the thermal radiation difference between a target and its background to achieve long-range target detection.

According to the definition by the Society of Photo-Optical Instrumentation Engineers (SPIE), small targets typically

refer to objects in a 256 × 256 image with an area of fewer than 80 pixels, accounting for approximately 0.12% of

the total image area . These small targets usually appear as faint, tiny points, characterized by their diminutive

size and a lack of clear texture and shape features. Moreover, the background in infrared images is often affected

by random noise, clutter, and environmental factors, making small targets vulnerable to interference. Furthermore,

some practical applications have strict requirements for the real-time performance of detection algorithms.

Therefore, the rapid and accurate detection of small targets in complex backgrounds poses a significant challenge.

Two primary methods are employed in ISTD for target detection: Tracking-Before-Detection (TBD) and Detection-

Before-Tracking (DBT). TBD relies on the temporal information of consecutive frames to capture the movement

and features of potential targets. It struggles with stationary or sporadically moving targets and is constrained by

computational resources. On the other hand, DBT applies single-frame ISTD to infrared data, identifying potential

targets based on features such as contrast and low-rank sparsity. Single-frame infrared small target detection has

been widely concerned because of its simple data acquisition, low computational complexity, not affected by target

motion and wide applicability.

The categorization of single-frame ISTD can be determined by the structure of the image; that is, whether (1) the

original image or (2) the patch image is used . The first category detects the target directly from the original
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image; for example, by filtering or Human Vision System (HVS). Filter-based methods  have limited utility in

ISTD, due to their strict requirements on the background variation and prior knowledge. Meanwhile, HVS-based

methods  use the contrast mechanism to quantify the difference between the target and the

background, thereby enhancing small targets. However, these methods are limited by the local saliency of the

target, rendering them ineffective when detecting targets that are dark or similar to the background. Some deep

learning technologies  have recently been applied to this category, but a lack of large data sets limits

their performance.

The other category—namely, patch-based methods—transforms small target detection into a low-rank matrix

recovery problem . This transformation can circumvent the aforementioned limitations, such as the dependence

on prior knowledge and target saliency, as well as the false detection of dark targets. The most popular method is

Infrared Patch-Image (IPI) , which uses a sliding window technique to generate a corresponding patch image

from the original image. Due to its outstanding performance, many studies  have been

conducted on IPI, which typically yields superior results. However, patch-based methods still have two problems:

(1) The misclassification of strong edges as sparse target components, and (2) the time-consuming nature of the

method.

The above-mentioned misclassification arises from the limited ability of the model to distinguish strong edges from

sparse components. To address this issue, we propose a Background Suppression Proximal Gradient (BSPG)

method, incorporating a novel continuation strategy during the alternating updating of low-rank and sparse

components. Our proposed continuation strategy can preserve more components while updating the low-rank

matrix, while also reducing the update rate of sparse matrix. As strong edges frequently correspond to larger

singular values than targets, the former facilitates the transition of strong edges from sparse components to low-

rank components, thereby enabling the model to eliminate the effect of strong edges. Meanwhile, the latter ensures

the convergence of the algorithm. The time-consuming nature of patch-based methods is due to the complex

nature of solving the method, mainly including solving the LRSD problem and constructing/reconstructing patch

images. To address this issue, we utilize both algorithmic optimizations and hardware enhancements. At the

algorithmic level, we propose an approximate partial SVD (APSVD) for efficiently solving the LRSD problem and

use a rank estimation method to ensure the accuracy of the solution. At the hardware level, we propose the use of

GPU multi-threaded parallelism strategies to expedite the construction and reconstruction modules, as these

modules can be decomposed into repetitive and independent sub-tasks.

2. Infrared Small-Target Detection Based on Background-
Suppression Proximal Gradient and GPU Acceleration

2.1. HVS-Based Methods

HVS-based methods detect small targets by utilizing the contrast differences between the target region and its

surrounding background. These methods can be categorized based on the type of information they use: grey scale

information, gradient information, and a combination of both greyscale and gradient information. Local Contrast
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Measure (LCM)  proposes a novel method for detecting small targets by leveraging grey scale contrast. This

method uses a contrast mechanism designed to enhance small targets while effectively suppressing the

background noise. Based on the improvement of the LCM algorithm, Relative Local Contrast Measure (RLCM) ,

Multiscale Patch-based Contrast Measure (MPCM) , Weighted Local Difference Measure (WLDM)  and other

methods were proposed. Gradient-based contrast methods use first-order or second-order derivatives of the image

to extract gradient information. They then utilize this information to design a gradient difference measure that

effectively discriminates between small targets and the surrounding background. Building on this concept,

Derivative Entropy-based Contrast Measure (DECM)  and Local Contrast-Weighted Multidirectional Derivative

(LCWMD)  propose the use of multidirectional derivative to incorporate more gradient information. In addition,

Local Intensity and Gradient (LIG) , and Gradient-Intensity Joint Saliency Measure (GISM)  fuse gradient and

intensity information to further highlight small targets. Although HVS-based methods can be effective in many

scenarios, they are susceptible to missed detections and false positives in images characterized by low signal-to-

clutter ratios and high-intensity backgrounds.

2.2. Deep Learning-Based Methods

In recent years, there has been a significant research focus on deep learning-based methods for infrared small

target detection, which seek to achieve high-accuracy detection rates. These deep learning models are trained to

discern features within infrared images using vast datasets, thereby enhancing their detection capabilities. To

address the problem that infrared small target features are easily lost in deep neural networks, Attention Local

Contrast Network (ALCNet)  proposes asymmetric contextual modulation to interact with the feature information

between the high and low levels. Dense Nested Attention Network (DNANet)  adequately fuses feature

information through densely nested interaction modules to maintain small targets in deep layers. Miss Detection vs.

False Alarm (MDvsFA)  proposes dual generative adversarial network models, trained inversely to decompose

the detection challenge into sub-problems, aiming to strike a balance between miss detections and false alarms.

While publicly available datasets have advanced deep learning for infrared small target detection, the scant

features of small targets and the dependency on training samples limit the applicability of the model in varied real-

world scenarios.

2.3. Patch-Based Methods

A significant amount of research has been conducted to improve the detection ability of IPI . On one hand, some

methods have used prior constraints, including ColumnWeighted IPI (WIPI) , Non-negative IPI with Partial Sum

(NIPPS) , and Re-Weighted IPI (ReWIPI) . On the other hand, some studies have identified limitations in the

nuclear norm and L1 norm and, so, alternative norms to achieve improved target representation and background

suppression have been proposed; for example, Non-convex Rank Approximation Minimization (NRAM)  and

Non-convex Optimization with Lp norm Constraint (NOLC)  introduce non-convex matrix rank approximation

coupled with L2,1 norm and Lp norm regularization, while Total Variation Weighted Low-Rank (TVWLR) , Kernel

Robust Principal Component Analysis (KRPCA)  introduce total variation regularization, High Local Variance

(HLV)  method present LV* norm to constrain the background’s local variance. Patch-based methods mainly
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consider the low-rank nature of the background, affecting their performance in the presence of strong edges.

However, our method pays additional attention to heterogeneous background suppression in low-rank constraints,

to avoid this problem.

2.4. Acceleration Strategies for Patch-Based Methods

Acceleration strategies for patch-based methods can be categorized into algorithm-level and hardware-level

acceleration. The first category mainly relies on the strategy of reducing the number of iterations. Self-Regularized

Weighted Sparse (SRWS)  and NOLC  improve the iteration termination condition for acceleration but still

suffer from the time consumption associated with decomposing large matrices. The other category (i.e., hardware

acceleration) relies on the use of computationally powerful hardware and efficient parallelization strategies. In Ref

, the researchers proposed Separable Convolutional Templates (SCT); however, this method has poor

performance under complex backgrounds. In addition, extending the patch model to tensor space can also achieve

acceleration . Representative methods in this direction include Re-weighted Infrared Patch-Tensor

(RIPT) , LogTFNN  and the Pareto Frontier Algorithm (PFA) . However, unfolding the tensor into a two-

dimensional matrix before decomposition increases the algorithm’s complexity. Partial Sum of the Tensor Nuclear

Norm (PSTNN)  and Self-Adaptive and Non-Local Patch-Tensor Model (ANLPT)  utilize the t-SVD speed up

tensor decomposition with t-SVD. However, these methods are limited by the complexity of finding the applicable

constrained kernel norm. Our work investigates accelerated patch-based methods at both the algorithmic and

hardware levels.
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