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Remote sensing technology is vital for precision agriculture, aiding in early issue detection, resource management,

and environmentally friendly practices. Recent advances in remote sensing technology and data processing have

propelled unmanned aerial vehicles (UAVs) into valuable tools for obtaining detailed data on plant diseases with

high spatial, temporal, and spectral resolution. Given the growing body of scholarly research centered on UAV-

based disease detection, a comprehensive review and analysis becomes imperative to provide a panoramic view

of evolving methodologies in plant disease monitoring and to strategically evaluate the potential and limitations of

such strategies.
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1. Introduction

Plant diseases have multifaceted and far-reaching consequences, impacting agriculture, ecosystems, economies,

and human well-being. They can lead to reduced crop yields, lower crop quality, and even complete crop failures,

which can disrupt the supply chain, result in increased food prices and potential food shortages, and negatively

impact food security and the livelihood of stakeholders engaged in agricultural sectors . Globally, the economic

impact of crop yield loss due to plant diseases is estimated to be around US$220 billion each year . Annual yield

losses due to plant diseases and pests in the top food staple rice, maize, and wheat range from 24.6% to 40.9% for

rice, from 19.5% to 41.1% for maize, and from 10.1% to 28.1% for wheat worldwide . Plant diseases can also

alter ecosystems by affecting the abundance and distribution of plant species and disrupting the food web and

ecosystem dynamics . Some plant diseases may cause health issues in humans and livestock. For example,

mycotoxins produced by certain fungi can contaminate crops, leading to the ingestion of toxins through food

consumption . It is, therefore, essential to adopt good management practices to reduce disease risk and potential

epidemic outbreaks in order to minimize their impact and ensure good crop production .

There have been multiple review articles dealing with the use of UAV for monitoring and assessing biotic plant

stresses, including plant diseases (e.g., ). For example, Barbedo  discussed UAV imagery-

based monitoring of different plant stresses caused by drought, nutrition disorders, and diseases and the detection

of pests and weeds using UAVs. 
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In all the reviews listed above, an overview of the types of plants and diseases investigated using UAV imagery, the

trends of sensor and camera types, along with the related data analysis methods has yet to be provided.

Furthermore, as UAV-based plant stress detection is still a subject of ongoing research, a comprehensive overview

and interpretation of current research on UAV-based applications for plant disease detection and monitoring is of

particular interest. For farmers willing to adopt such approaches, such a comprehensive review can serve as a

repository of knowledge, elucidating the evolving landscape of technological advancements and methodologies

pertinent to disease management. It also offers a strategic perspective on the potential and limitations of these

approaches. For agribusinesses, comprehensive reviews can facilitate informed decision-making regarding

investment, implementation, and integration of UAV systems within farm activities. For researchers, in addition to

providing potential research avenues, the findings of the review can help create and/or foster collaboration and

information exchange, encouraging innovation and cross-sectoral synergy.

2. UAV-Based Applications for Plant Disease Detection and
Monitoring

Plants of Interest Found in Articles

The systematic quantitative literature review indicated that current research has dealt with disease symptoms on

35 different plants (Figure 1). Not surprisingly, diseases in cereal crops were most often investigated in the articles,

with wheat and maize being the cereal crops that were most investigated (Figure 1). Other plant species most

often studied included potato and sugar beet (Figure 1). When breaking down the number of research articles by

plant species investigated for the top countries of studies China, USA, Brazil, Malaysia, Germany, and Italy, the

analysis showed that in China or the USA, diseases in 10 different plant species were investigated. Diseases on

wheat, pine tree, and banana were the most studied in China, whereas in the USA, it was research on maize

diseases that dominated (Figure 1a). In this latter country, the number of research articles reporting on UAV-based

approaches for disease monitoring was the same for apple, citrus, cotton, tomato, and watermelon (Figure 1a). In

Brazil, diseases on five plant species were investigated, with coffee and soybean dominating. For Malaysia,

research on UAV-based monitoring of diseases affecting oil palm ranked first among the three plant species of

study (rice and eucalyptus were the two other plant species). A distinct trait was found for Germany, where most

studies (four out of five) concerned sugar beet (Figure 1a).
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Figure 1. The proportion of plant species whose diseases were investigated in the research articles. (a) Countries

with more than one study plant; (b) countries with one study plant.

Diseases and Groups of Pathogens Investigated

The list of plant diseases whose symptoms and/or severity were assessed using UAV-based imagery is presented

in Table 1. Overall, the symptoms and/or severity of more than 80 plant diseases have been monitored using UAV-

based approaches. Depending on the plant and the disease, the studies involved disease symptoms visible on

either leaf, stem, or fruit, with most of the studies focusing on leaf diseases. In wheat, six main diseases were

investigated, including leaf rust (caused by Puccinia triticina) , yellow rust (caused by P. striiformis f. sp. tritici)

, powdery mildew (caused by Blumeria graminim f. sp. tritici) , tan spot (caused by

Pyrenophora tritici-repentis) , Septoria leaf blotch (caused by Zymoseptoria tritici) , and Fusarium head blight

(caused by a complex of Fusarium graminearum Schwabe and F. culmorum)  (Table 1). The first four

diseases typically attack wheat leaves, whereas yellow rust can cause damage to the leaves and stems, whereas

symptoms of Fusarium head blight are visible on infected spikelets. For potatoes, symptoms of five diseases have

been investigated using UAV-based approaches (Table 1). These diseases include potato early blight (caused by
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Alternaria solani Sorauer) , late blight (caused by Phytophthora infestans (Mont.) De Bary) , the Y

virus (caused by the potato virus Y) , soft rot (caused by Erwinia bacteria) , and vascular wilt (caused by

Pseudomonas solanacearum) .

Table 1. List of plant diseases whose symptoms and/or severity were investigated.

[30] [31][32][33][34]

[35] [30]

[36]

Plant Disease Related Reviewed Study

Apple tree

Cedar rust

Scab

Fire blight

Areca palm Yellow leaf disease

Banana

Yellow sigatoka

Xanthomonas wilt of banana

Banana bunchy top virus

Fusarium wilt

Bermudagrass Spring dead spot

Citrus

Citrus canker

Citrus huanglongbing disease

Phytophthora foot rot

Citrus gummosis disease

Coffee Coffee leaf rust

Cotton Cotton root rot

Eucalyptus Various leaf diseases

Grapevine

Grapevine leaf stripe

Flavescence dorée phytoplasma

Black rot

Isariopsis leaf spot

Kiwifruit Kiwifruit decline

Lettuce Soft rot
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Plant Disease Related Reviewed Study

Maize

Northern leaf blight

Southern leaf blight

Maize streak virus disease

Tar spot

Norway spruce Needle bladder rust

Oil palm Basal stem rot

Oilseed rape Sclerotinia

Okra Cercospora leaf spot

Olive tree

Verticillium wilt

Xylella fastidiosa

Peacock spot

Onion
Anthracnose-twister

Stemphylium leaf blight

Opium poppy Downy mildew

Paperbark tree Myrtle rust

Peach tree Fire blight

Peanut Bacterial wilt

Pine tree
Pine wilt disease

Red band needle blight

Potato

Potato late blight

Potato early blight

Potato Y virus

Vascular wilt

Soft rot

Radish Fusarium wilt
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Plant Disease Related Reviewed Study

Rice

Sheath blight

Bacterial leaf blight

Bacterial panicle blight

Soybean
Target spot

Powdery mildew

Squash Powdery mildew

Sugar beet

Cercospora leaf spot

Anthracnose

Alternaria leaf spot

Beet cyst nematode

Sugarcane White leaf phytoplasma

Switchgrass Rust disease

Tea Anthracnose

Tomato

Bacterial spot

Early blight

Late blight

Septoria leaf spot

Tomato mosaic virus

Leaf mold

Target leaf spot

Tomato yellow leaf curl virus

Watermelon Gummy stem blight

Anthracnose

Fusarium wilt

Phytophthora fruit rot
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Sensors Used for the Detection and Monitoring of Plant Diseases

Various types of sensors mounted on UAVs have been used to collect high spatial and spectral resolution data for

plant disease detection and monitoring (Figure 2). The most used sensors were multispectral, RGB, hyperspectral,

and digital cameras. Wheat was the plant whose diseases were investigated using different sensor types

(individually or in combination) (Figure 2). Thus, symptoms of yellow rust on wheat leaves have been investigated

using data from multispectral sensors , RGB cameras , hyperspectral sensors , and RGB

+ multispectral sensors . Symptoms of Fusarium head blight were identified using data captured by

hyperspectral sensors  and thermal infrared + RGB sensors , whereas symptoms of Septoria leaf blotch and

tan spot were detected using RGB + multispectral sensors  (Figure 2). Images acquired using multispectral and

RGB sensors were more often used to derive vegetation indices (VIs), which allowed for the detection of changes

in vegetation health indicative of disease (e.g., discoloration, wilting, spots). Owing to their capability to capture

images in different narrow spectral bands, hyperspectral sensors were used to detect more subtle changes in

vegetation health that may not be visible with other sensors. Such data were used to create spectral signatures

characteristic of a given disease.
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Figure 2. The distribution of sensor types and plants whose diseases were investigated. The segments in each

ring are proportionate to the number of related research articles reviewed in the systematic quantitative literature

review. RGB, NIR, and LiDAR stand for red-green-blue, near-infrared, and light detection and ranging, respectively.

Methods Used for Image Processing and Data Analysis

By capturing high spatial and spectral resolution images, sensors, and cameras embarked on UAVs provide

valuable data that can be leveraged to analyze and detect plant disease symptoms. Results of the SQLR showed

that various techniques, including visual analysis, computer vision, and VI-based analysis, have been used to

process and analyze UAV-based imagery data for plant disease detection. Among these techniques, computer

vision was the most used technique. In computer vision, the algorithms used for image classification and object

recognition were machine learning (ML) algorithms that enabled the extraction of meaningful information from the

images by automatically identifying and classifying visual patterns associated with disease symptoms. Generally,

after image pre-processing, feature extraction techniques were employed to identify the relevant visual

characteristics associated with disease symptoms. Then, the extracted features were classified into different

categories (e.g., healthy, diseased, etc.). Next, ML algorithms were trained on labeled datasets where regions of
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interest have been annotated manually as healthy or diseased by human experts. Through the training process,

the algorithms learned to recognize and distinguish between healthy and diseased plant organs. Depending on the

extracted features, the classification analysis was either color, texture, shape, or spectral-based. Color-based

analysis examines variations in coloration of the plant organ of interest (i.e., leaf) that may indicate the presence of

disease.

3. Promising Means for Improving Plant Disease
Management

Eleven years on from the work of Mahlein et al. , which critically reviewed the use of non-invasive sensors for

the detection, identification, and quantification of plant diseases, there has been noticeable progress in the field of

plant disease detection and monitoring using remote sensing derived information. In recent years, UAV-based

imagery has become the new norm for plot and field-level studies. UAV-based approaches for plant disease

detection and identification have several advantages over traditional methods as sensors mounted on UAVs

provide high-resolution and spectral images that can be used to identify small-scale changes in crop health. UAVs

also provide a fast and effective solution for capturing images over larger farmland areas, which can be challenging

when using ground-based methods, though the use of UAVs in larger areas can be limited by the payload capacity

and battery resources . Other advantages of UAV-based approaches for plant disease monitoring include the

reduced reliance on manual inspection and scouting, thereby saving time and resources. While initial investments

in UAV technology might be significant, they can lead to long-term cost savings. As such, UAVs offer a promising

approach for improved plant disease management.

While UAV-based approaches for plant disease monitoring offer several advantages, it is important to acknowledge

their limitations . Challenges related to background interference, weather conditions, sensor constraints,

resource limitations (e.g., peripherals, sensors) and disparities between ML-based model training and validation

stages, variations in disease symptoms over time and in space have been addressed in . These

challenges will not be discussed extensively here. Adverse weather, such as strong winds, rain, or low light

conditions during UAVs flights, can hinder image acquisition and potentially impact the accuracy of disease

detection. Another limitation is related to the image annotation consistency. Because the accuracy of disease

detection relies on the expertise and experience of the human annotators who label the training datasets,

variations in annotations among different operators can introduce inconsistencies and affect the generalization

capabilities of the classification models. To overcome limitations associated with weather conditions, careful

consideration and planning are required to avoid unfavorable weather conditions as much as possible and ensure

a representative sampling of the field. Another potential solution would be to develop autonomous UAV systems

that can operate in complex environments (e.g., under reduced light conditions) and adapt to changing conditions

to improve flight operations. To address annotation consistency, regular training and calibration sessions are

possible solutions to help overcome such a challenge.

4. The Way Forward
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Research on using UAV-based approaches to detect and monitor plant stress caused by diseases is still underway,

and there are ample opportunities to develop innovative solutions and improve the effectiveness and efficiency of

these approaches. Current image analysis techniques for plant disease detection can be time-consuming, labor-

intensive, and computationally demanding, particularly when it comes to using sophisticated CNN-based

approaches, that require graphical processing units to train models. Balancing the trade-offs between resource

requirements, model complexity, performance, and interpretability, and transfer learning opportunities has guided

the choice of the most suitable ML technique for analyzing UAV imagery data. Future research can focus on

improving the efficiency of ML-based approaches through the development of more advanced ML algorithms that

can analyze images quickly and accurately. This will allow for the development of methods for real-time data

analysis and decision-making tools that can be integrated with UAV systems. In this line, future research can

investigate the use of reinforcement learning algorithms for plant disease management, which will involve training

the models to learn from past actions and make decisions that optimize long-term plant health and minimize

disease outbreaks.

There have been encouraging outcomes in integrating multiple sensors to provide more detailed and accurate data

for plant disease detection, as highlighted by the number of related research articles, though this remains limited to

a few numbers of plant species and diseases (Table 1). Future research can explore extending such approaches

to economically important plant diseases of major food crops, such as rice, wheat, maize, cassava, plantains,

potatoes, sorghum, soybeans, sweet potatoes, and yams, around the world. Research can also focus on

integrating UAV data from multiple sensors or with satellite imagery (i.e., data fusion) for plant disease detection,

as it has been explored for crop yield forecasting  and crop monitoring . Such UAV and satellite data fusion

will allow for a better understanding of crop health patterns and trends over large areas .
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