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Remote sensing technology is vital for precision agriculture, aiding in early issue detection, resource management,
and environmentally friendly practices. Recent advances in remote sensing technology and data processing have
propelled unmanned aerial vehicles (UAVS) into valuable tools for obtaining detailed data on plant diseases with
high spatial, temporal, and spectral resolution. Given the growing body of scholarly research centered on UAV-
based disease detection, a comprehensive review and analysis becomes imperative to provide a panoramic view
of evolving methodologies in plant disease monitoring and to strategically evaluate the potential and limitations of
such strategies.
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| 1. Introduction

Plant diseases have multifaceted and far-reaching consequences, impacting agriculture, ecosystems, economies,
and human well-being. They can lead to reduced crop yields, lower crop quality, and even complete crop failures,
which can disrupt the supply chain, result in increased food prices and potential food shortages, and negatively
impact food security and the livelihood of stakeholders engaged in agricultural sectors 2. Globally, the economic
impact of crop yield loss due to plant diseases is estimated to be around US$220 billion each year B, Annual yield
losses due to plant diseases and pests in the top food staple rice, maize, and wheat range from 24.6% to 40.9% for
rice, from 19.5% to 41.1% for maize, and from 10.1% to 28.1% for wheat worldwide 4!, Plant diseases can also
alter ecosystems by affecting the abundance and distribution of plant species and disrupting the food web and
ecosystem dynamics BIE, Some plant diseases may cause health issues in humans and livestock. For example,
mycotoxins produced by certain fungi can contaminate crops, leading to the ingestion of toxins through food
consumption [, 1t is, therefore, essential to adopt good management practices to reduce disease risk and potential

epidemic outbreaks in order to minimize their impact and ensure good crop production B2,

There have been multiple review articles dealing with the use of UAV for monitoring and assessing biotic plant
stresses, including plant diseases (e.g., [QILUI2I13]14]15))  For example, Barbedo 19 discussed UAV imagery-
based monitoring of different plant stresses caused by drought, nutrition disorders, and diseases and the detection

of pests and weeds using UAVSs.
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In all the reviews listed above, an overview of the types of plants and diseases investigated using UAV imagery, the
trends of sensor and camera types, along with the related data analysis methods has yet to be provided.
Furthermore, as UAV-based plant stress detection is still a subject of ongoing research, a comprehensive overview
and interpretation of current research on UAV-based applications for plant disease detection and monitoring is of
particular interest. For farmers willing to adopt such approaches, such a comprehensive review can serve as a
repository of knowledge, elucidating the evolving landscape of technological advancements and methodologies
pertinent to disease management. It also offers a strategic perspective on the potential and limitations of these
approaches. For agribusinesses, comprehensive reviews can facilitate informed decision-making regarding
investment, implementation, and integration of UAV systems within farm activities. For researchers, in addition to
providing potential research avenues, the findings of the review can help create and/or foster collaboration and

information exchange, encouraging innovation and cross-sectoral synergy.

2. UAV-Based Applications for Plant Disease Detection and
Monitoring

Plants of Interest Found in Articles

The systematic quantitative literature review indicated that current research has dealt with disease symptoms on
35 different plants (Figure 1). Not surprisingly, diseases in cereal crops were most often investigated in the articles,
with wheat and maize being the cereal crops that were most investigated (Figure 1). Other plant species most
often studied included potato and sugar beet (Figure 1). When breaking down the number of research articles by
plant species investigated for the top countries of studies China, USA, Brazil, Malaysia, Germany, and ltaly, the
analysis showed that in China or the USA, diseases in 10 different plant species were investigated. Diseases on
wheat, pine tree, and banana were the most studied in China, whereas in the USA, it was research on maize
diseases that dominated (Figure 1a). In this latter country, the number of research articles reporting on UAV-based
approaches for disease monitoring was the same for apple, citrus, cotton, tomato, and watermelon (Figure 1a). In
Brazil, diseases on five plant species were investigated, with coffee and soybean dominating. For Malaysia,
research on UAV-based monitoring of diseases affecting oil palm ranked first among the three plant species of
study (rice and eucalyptus were the two other plant species). A distinct trait was found for Germany, where most

studies (four out of five) concerned sugar beet (Figure 1a).
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Figure 1. The proportion of plant species whose diseases were investigated in the research articles. (a) Countries

with more than one study plant; (b) countries with one study plant.
Diseases and Groups of Pathogens Investigated

The list of plant diseases whose symptoms and/or severity were assessed using UAV-based imagery is presented
in Table 1. Overall, the symptoms and/or severity of more than 80 plant diseases have been monitored using UAV-
based approaches. Depending on the plant and the disease, the studies involved disease symptoms visible on
either leaf, stem, or fruit, with most of the studies focusing on leaf diseases. In wheat, six main diseases were
investigated, including leaf rust (caused by Puccinia triticina) 18], yellow rust (caused by P. striiformis f. sp. tritici)
(16][17][18][19][20][21][22)[23][24][25] 'powdery mildew (caused by Blumeria graminim f. sp. tritici) (28], tan spot (caused by

Pyrenophora tritici-repentis) 24, Septoria leaf blotch (caused by Zymoseptoria tritici) 22, and Fusarium head blight

(caused by a complex of Fusarium graminearum Schwabe and F. culmorum) 2829 (Table 1). The first four
diseases typically attack wheat leaves, whereas yellow rust can cause damage to the leaves and stems, whereas
symptoms of Fusarium head blight are visible on infected spikelets. For potatoes, symptoms of five diseases have

been investigated using UAV-based approaches (Table 1). These diseases include potato early blight (caused by
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Alternaria solani Sorauer) 8%, |ate blight (caused by Phytophthora infestans (Mont.) De Bary) [BL[3283][34] the Y

virus (caused by the potato virus Y) B2, soft rot (caused by Erwinia bacteria) B, and vascular wilt (caused by

Pseudomonas solanacearum) 26,

Table 1. List of plant diseases whose symptoms and/or severity were investigated.

Plant Disease
Cedar rust
Apple tree Scab
Fire blight
Areca palm Yellow leaf disease

Yellow sigatoka

Xanthomonas wilt of banana

Banana
Banana bunchy top virus
Fusarium wilt
Bermudagrass Spring dead spot
Citrus canker
Citrus huanglongbing disease
Citrus
Phytophthora foot rot
Citrus gummosis disease
Coffee Coffee leaf rust
Cotton Cotton root rot
Eucalyptus Various leaf diseases
Grapevine leaf stripe
Flavescence dorée phytoplasma
Grapevine
Black rot
Isariopsis leaf spot
Kiwifruit Kiwifruit decline
Lettuce Soft rot

Related Reviewed Study
[37](38]
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Plant

Maize

Norway spruce
Oil palm
Oilseed rape

Okra

Olive tree

Onion

Opium poppy
Paperbark tree
Peach tree

Peanut

Pine tree

Potato

Radish

Disease
Northern leaf blight

Southern leaf blight

Maize streak virus disease

Tar spot
Needle bladder rust
Basal stem rot
Sclerotinia
Cercospora leaf spot
Verticillium wilt
Xylella fastidiosa
Peacock spot
Anthracnose-twister
Stemphylium leaf blight
Downy mildew
Myrtle rust
Fire blight
Bacterial wilt
Pine wilt disease
Red band needle blight
Potato late blight
Potato early blight
Potato Y virus
Vascular wilt
Soft rot

Fusarium wilt

Related Reviewed Study

[66][67](68]
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Plant Disease Related Reviewed Study
Sheath blight [9o7]
Rice Bacterial leaf blight (98]
Bacterial panicle blight (o8]
Target spot [99][200]
Soybean
Powdery mildew [99][200]
Squash Powdery mildew 101
Cercospora leaf spot [102][103][104][105][106][107]
Anthracnose [103][104]
Sugar beet
Alternaria leaf spot [103][104]
Beet cyst nematode [108]
Sugarcane White leaf phytoplasma 109
Switchgrass Rust disease 110
Tea Anthracnose 111
Bacterial spot [112][113][114]
Early blight [112]
Late blight [112]
Septoria leaf spot [112]
Tomato
Tomato mosaic virus [112]
Leaf mold 112
Target leaf spot (112](113][114]
Tomato yellow leaf curl virus [112][114]
Watermelon Gummy stem blight [115]
Anthracnose [115]
Fusarium wilt [115]
115

Phytophthora fruit rot

https://encyclopedia.pub/entry/50712 6/16



UAV-Based Applications for Plant Disease Detection and Monitoring | Encyclopedia.pub

Plant Disease Related Reviewed Study

Alternaria leaf spot —

Cucurbit leaf crumple 115

ging
plant disease par Downy mildew 18]
7777777777 Yellow rust [16][17][18][19[20)[21][22][23][24]{25]
3|
Leaf rust (6] ds
Septoria leaf spot [27]
Wheat ind
Powdery mildew [26]
Tan spot [27]
Fusarium head blight [28129] ral
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