Acid-Resistant Thin-Film Composite Nanofiltration Membrane

Subjects: Engineering, Environmental Contributor: Mowen Li, Wenhai Zhang, Xuehong Zhang, Hongxia Guo, Yucang Liang

Membrane filtration technology has attracted extensive attention in academia and industry due to its advantages of ecofriendliness related to environmental protection and high efficiency. Polyamide thin-film composite nanofiltration (PA TFC NF) membranes have been widely used due to their high separation performance. Non-acid-resistant PA TFC NF membranes face tremendous challenges in an acidic environment. Novel and relatively acid-resistant polysulfonamidebased and triazine-based TFC NF membranes have been developed, but these have a serious trade-off in terms of permeability and selectivity. Hence, how to improve acid resistance of TFC NF membranes and their separation performance in acidic environments is a pivotal issue for the design and preparation of these membranes.

Keywords: nanofiltration membrane ; acid-resistant nanofiltration membrane ; interface polymerization

1. Introduction

Membrane separation is a new separation technology that appeared in the early 20th century and developed rapidly after the 1960s ^{[1][2]}. Due to functions in separation ^[3], purification ^[4], concentration and refining ^[5], pivotal characteristics of high efficiency, energy saving, environmental protection, molecular level filtration, facile filtration, and easy control ^{[6][7][8]}, membrane separation technology has attracted extensive attention and has been widely applied in the food industry, medicine ^[9], biology ^[10], environmental protection, the chemical industry ^[11], metallurgy ^[12], the energy industry, petroleum ^[13], water treatment ^[14], bionics ^[15] and other fields, contributing huge economic and social benefits and becoming the most important factor in separation science ^[16]. According to the pore size of the membrane, membranes used in separation can be divided into microfiltration membranes (MF), ultrafiltration membranes (UF), nanofiltration membrane s(NF) and reverse osmosis membranes (RO) ^{[16][17]}.

With the large-scale expansion of industrial production, many industrial processes, such as metal processing ^[18], mining [19][20], pulp manufacturing [21] and glass processing [22], not only consume a large amount of water (24% of water resource for the global water demand of industry by 2050) ^[23], but also produce a large amount of acidic wastewater ^[24]. For instance, it is estimated that at least 0.65 million tons of acidic waste solution are produced in the stainless-steel pickling process in China each year [25]. Acidic wastewater is a complex mixture containing various metal ions (Mn, Fe, Zn, Cu, Al, etc.) [26] and many kinds of organic compounds (such as dyes) [27], and often has high acidity (pH < 3) [28][29], which brings about tremendous pressure on sustainable and environmental development ^{[25][30]}. Current techniques for treating acidic wastewater mainly include precipitation ^{[20][31]}, solvent extraction ^{[20][31][32][33]}, adsorption ^{[34][35]}, biological treatment [36], and membrane separation [37][38]. Precipitation is the most commonly used method for treating acidic wastewater. However, this process wastes acid resources due to the use of a large amount of alkaline reagents (such as CaO, Ca(OH)₂, NaOH, and Mg(OH)₂), and also creates a considerable amount of sludge-containing metal compounds, which are difficult to manage [31]. Solvent extraction is critical for recovering mineral acids, such as HCl and H₂SO₄, from wastewater created in hydrometallurgical processes [39]. The issue of low acid extraction and stripping, which is detrimental to recycling of the extractants, still remains [40]. Adsorption can, perhaps, remove metal ions from acidic wastewater [41], but it has an adsorption saturation and cycling limit that restricts its applicability [35][42]. Microbial treatment efficacy is limited and is susceptible to temperature and pH changes in the environment [43]. In conclusion, traditional treatment processes are unable to fully utilize acidic and metallic resources at an affordable cost; thus, new technologies should be developed.

Compared to conventional separation techniques, membrane technologies are very practicable for industrial molecular separations, including liquid–liquid separation and gas separation ^{[34][44][45][46]}. Nanofiltration (NF) membrane technology, as one of the membrane-based separation techniques, is a promising technology in the recyclability of valuable metals, the reusability of waste acid, and the reduction of sludge production ^{[47][48][49][50]}, mainly attributable to the presence of

adjustable nanoscale pores in the membranes ^[51], and their unique surface charge that enables Donnan effects ^{[52][53]}. When the size of the electrically neutral components (neutral particles, organic small molecules) in the solution is larger than the pore size of the membrane, the neutral particles or the separation layer need to be modified to increase the probability of the neutral components passing through the nanofiltration membrane ^{[54][55]}. Moreover, due to the high deformation energy barrier ^{[56][57]} and the mass transfer resistance of the membrane pores ^{[58][59]}, the nanofiltration membrane has strong retention capacity for neutral components that are larger or slightly smaller compared to the pore size of the membrane surface may be negatively or positively charged ^[62], which can result in electrostatic interactions between ions in the feed liquid and produce a strong repulsion effect between high valence state ions with the same charges present in high concentrations ^{[52][63]}. The resulting Donnan effect results in NF membranes having strong rejection of metal salt components ^{[61][53][64]}. With respect to their two primary retention mechanisms, nanofiltration membranes are well suited to two typical circumstances described below. When treating acidic wastewater containing metal ions, the higher valence state metal ions are retained for enrichment, while the lower valence state acidic ions and hydrogen ions are recycled by NF ^[65]. When treating acidic dy wastewater, the large hydrated volume of the dyes, and organic small molecules, are retained, while the acid is recycled by NF ^[66].

2. Challenge of NF Membranes in Acidic Environment

The degradation of the PA layer in acidic condition mainly depends on the stability of PA polymer network linked by amide bonds. The carbonyl group in amide bonds is susceptible to the delocalization of lone pairs of electrons, making the oxygen in the carbonyl group strongly nucleophilic ^[67].

The decline of membrane permeability during nanofiltration of acidic solution is often influenced by several factors, such as fluid viscosity and the compactness of the outer separation layer on the membrane. It is well known that the fluid viscosity and membrane permeability are inversely correlated ^[68], and the acidic feed liquid often showed higher viscosities than neutral fluids, leading to the lower permeate flux ^[69]. In addition, the hydrolyzed products, such as carboxylic acid and sulfonic acid from amide group and sulfonamide group on the separation layer, can form inter- and intramolecular hydrogen bonds with the remaining carboxyl groups, amine groups, and water on the membrane surface in an acidic aqueous solution, further impacting the separation layer structure and declining permeability of the membrane [70].

The decrease in selectivity of the NF membrane is often caused by membrane surface charge. NF membranes usually carry the negative charge in neutral and alkaline conditions and positive charge in acidic environment $^{[71]}$. The type of the surface charge of the NF membrane is considered for selectivity of the membrane on the separation of different metal ions. In general, the salt rejection increases with increasing membrane surface charge, especially, and salt rejection is lowest at the isoelectric point (IEP) of the membrane. In an acidic solution, if pH is close to the IEP of the most negatively charged acid-resistant membrane, membrane surface charge will be significantly decreased while accompanied by a severe decrease in the Donnan effect $^{[72]}$.

3. Preparation and Regulation of Acid-Resistant NF Membrane Applied in Extreme Acid Environment

To completely solve the problem of hydrolysis of NF membranes dominated by polyamide-based materials in the extremely acidic environment, researchers have developed a series of acid-resistant membranes, such as polysulfonamide, triazine polyamine, and polyurea membranes, and so on. Such acid-resistant membranes showed high stability in strong acidic environments and could treat acidic feed liquids as well. Unfortunately, the separation performance of acid-resistant membranes was often unsatisfied ^[73]. The majority of them still stay in laboratory stage, and further manipulation is needed to be carried out in order to improve the separation performance.

The aforementioned PSA-based TFC NF membranes are relatively stable compared to PA-based membranes. The separation layer formed by interfacial polymerization of amine monomers with sulfonyl chloride also has good acid resistance and thereby inhibits hydrolysis and keeps a high stability due to the stable sulfonamide groups. If rigid conjugated phenyl PSA chains are integrated into the structure of the separation layer, PSA-based TFC NF membranes will become more stable in the extreme acidic environment. In addition, hydrolysis of the sulfonamide group occurs only at extremely low pH and high temperatures. However, the present acid-resistant polysulfonamide membranes generally exhibited unsatisfied separation performance. The main reason is that the organic monomers containing sulfonyl chloride group tend to have relatively higher molecular weight, lower diffusion coefficient, and reactivity than that bearing acyl chloride groups ^[74], which are easy to form a relatively loose separation layer with larger pore size ^[75]. To improve the

selectivity of the membrane, the thickness of separation layer is increased. As a result, the permeability significantly decreased, exhibiting the typical trade-off effect. For example, Eslami et al. prepared polysulfonamide membranes by interfacial polymerization of PEI, PIP, MPD, and BDSC ^[76]. For such a membrane, the highest flux was only 4.4 $L \cdot m^{-2} \cdot h^{-1} \cdot bar^{-1}$, while the rejection for salt solution was almost zero. This means that the separation performance of the membrane is necessary to be improved by changing the structure and composition of the membrane.

Using amine-rich macromolecular polymers, such as polyallylamine (PAH) or polyethyleneimine (PEI) as the aqueous monomers, will be useful to improve membrane permselectivity. In fact, the interfacial polymerization is regulated by the diffusion of organic phase into the aqueous phase. The monomer with higher molecular weight would lead to greater steric hindrance and lower diffusion rate, resulting in the fact that the interfacial polymerization just occurs on the side closest to the aqueous phase [TZ]. The reaction on the side of aqueous phase usually results in an increased membrane thickness. Therefore, it is necessary to use an appropriate concentration of aqueous phase monomer to reduce the diffusion rate of aqueous phase and improve the dispersion uniformity of aqueous phase, while the diffusion process of the organic phase is used to modify defects and reduce thickness. Moreover, the rich amine groups in the polymer chain can improve the positively charge capacity of the membrane surface and increase the selectivity of the NF membrane for metal ions. Wang et al. prepared positively charged and acid-resistant PSA TFC NF membrane by interfacial polymerization of macromolecular PAH and BDSC on the PES support layer ^[TA]. By properly adjusting the concentration, the prepared membrane had more positive charges and a denser structure compared to the conventional PSA membranes. The water flux of the membrane was $6.82 \text{ L·m}^{-2}\cdot\text{h}^{-1}\cdot\text{bar}^{-1}$, and the rejection rate was 88.3% for MgCl₂ after being soaked in 20% (wt/v) H₂SO₄ aqueous solution for 30 days.

To improve the crosslinking degree of interfacial polymerization reaction, 1,3,6-naphthalenetrisulphonyl chloride (NTSC) was used to replace BDSC. NTSC containing more sulfonyl chloride groups showed higher reactivity, which could increase the crosslinking degree of the separation layer and make it much dense. The dense interfacial layer can also reduce thickness and improve the separation performance of the acid-resistant membrane. Liu et al. synthesized the NTSC monomer by the reaction of sodium 1,3,6-naphthalene trisulfonate and thionyl chloride in N,N-dimethylformamide (DMF) ^[78]. The interfacial polymerization reaction of NTSC and PIP on PSf support layer afforded an acid-resistant PIP-NTSC TFC NF membrane ^[78]. Such a NF membrane showed a water flux of 5.8 L·m⁻²·h⁻¹·bar⁻¹, with more than 86.5% of rejection for Na₂SO₄. Note that the separation performance did not show any significant decline after being soaked in 20% (wt/v) H₂SO₄ aqueous solution for two months or consecutively run in 4.9% (wt/v) H₂SO₄ aqueous solution for 60 days, indicating a good permselectivity and long-term stability, implying a promising application in treating acidic effluents from metal industries.

Furthermore, manipulation on interface polymerization process can also be used to improve the membrane separation performance. For example, cross-linking agents or surfactants were pre-coated on the support membrane or added into the aqueous phase ^{[79][80]}. This could not only improve the distribution of monomers on the support layer, but also regulate the diffusion process of monomers, thereby improving the separation performance ^{[78][81]}. Pre-preparing porous interlayer polymers, such as covalent organic frameworks (COF) and sulfonated poly(ether-ether-ketone) (SPEEK) on the surface of the support layer, can improve monomer distribution and provide water flow channels, thereby improving permeability and selectivity ^{[82][83]}. Adding COF or other nanoporous materials to the separation layer can increase the membrane flux and the surface charge ^{[84][85][86]}, thereby significantly improving the separation performance ^[87]. It is also possible to use a technique, which is similar to the LBL assembly method ^[88] or multilayer interfacial polymerization, to reduce the separation layer defects and increase the membrane density, leading to the significantly improved permeability ^{[89][90]}.

Cyanuric chloride is regarded as a good monomer with high acid stability. It reacted with amine monomer to form triazine polyamine membrane, which showed a high acid-resistant ability. The reasons are attributed to (1) the absence of carbonyl group in amine group of the separation layer structure that is prone to protonation and nucleophilic attack compared to the amide group ^[91] and (2) the single and double bonds of the carbon and nitrogen atoms of the triazine ring are arranged alternately to form a stable acid-resistant conjugated structure ^[92], which makes the separation layer have good acid resistance. However, the separation performance of the triazine polyamine-based membrane is also not well satisfied, mainly because the three chlorines from cyanuric chloride of the triazine ring have different reactivities ^[93]. The first chlorine has a high reactivity ^[94], while the substitution of the second and third chlorine in CC gradually becomes difficult. Such stage reactivity of chlorine substitution makes it less possible for diamine monomers with smaller molecules, such as diethylene triamine (DETA), tetraethylene pentamine (TEPA), or PEI, which contain three or more amine groups, were used to react with CC via interfacial polymerization to obtain the membrane with good selectivity ^[95]. Note that the reaction of CC and aqueous monomer often occurs under a high concentration, high temperature, and long time, thereby usually leading to a relatively thick separation layer. Because PEI with high concentration is prone to

permeate into the pore of the support layer, this results in a serious pore blockage or reduction of pore diameter, thus reducing the permeability of membrane. The interfacial polymerization of PEI and CC on the hydrophilic PES UF membranes afforded acid-resistant polyamine membranes with the NaCl rejection of about 65% and a pure water flux of only 2.7 $L \cdot m^{-2} \cdot h^{-1} \cdot bar^{-1}$ [91]. Therefore, it is necessary to use some strategies to prevent the aqueous phase monomer from penetrating too deeply into the support layer, which include fine-tuning the concentration of reactants, regulating the reaction time, or introducing interlayer layer.

By finely regulating the concentration of the organic phase or decreasing temperature to alleviate the reaction rate, the separation performance of the polyamine membrane can be improved ^[96]. Yu et al. prepared a Janus acid-resistant nanofiltration membrane with opposite surface charge separation layer by using interfacial polymerization of PEI and low concentration of CC on PES UF substrate, and curing treatment was used to enhance crosslinking degree ^[97]. This approach, named the low concentration and curing treatment (LC-CT) method, resulted in a looser selective layer with more unreacted amine groups on the flip side of the membrane, as well as the formation of a less defective layer. The resultant TFC NF membrane showed the flux of $5.2 \text{ L} \cdot \text{m}^{-2} \cdot \text{h}^{-1} \cdot \text{bar}^{-1}$, along with 92.3% of rejection for MgCl₂ and 71.7% for Na₂SO₄, suggesting that such a Janus NF membrane prepared via the LC-CT method can effectively improve the separation performance and acid stability compared to the commercial PA membrane NFM-1 and the commercial acid-resistant membranes NFM-1 and NFM-2.

lonic liquids (ILs) have been used in the membrane post-treatment process to improve membrane performance ^{[98][99]}. The regulation of the interfacial diffusion process is performed mainly by utilizing the orderly directional arrangement of ILs at the water–oil interface, controlling the orderly diffusion of water-phase monomers to the interface and effectively manipulating the interfacial polymerization process. This approach can efficiently construct a highly ordered separation layer and improve the permeance of the acid-resistance membrane. Bai et al. ^[100] employed ILs, 1-aminopropyl-3-methylimidazolium bis((trifluoromethyl)sulfonylimide to regulate the interfacial polymerization reaction of PEI and CC on the PSf UF support membrane for preparing a polyamine acid-resistant NF membrane with a highly ordered separation layer. Such a membrane showed a high selectivity, with 98.2% of rejection for Y^{3+} and good acid stability. Meanwhile, the permeability was significantly improved, reaching 71.2 L·m⁻²·h⁻¹·bar⁻¹.

Yu et al. prepared a dual-charge polyamine acid resistant NF membrane (ARNFM) by interfacial polymerization of PEI with low concentration CC on the surface of PES UF membrane, followed by the post-treatment of citric acid (CA) to improve the permeation performance and acid resistance ^[101]. Treatment of dense nanofiltration membranes with weakly acidic or alkaline reagents, such as CA, removed small oligomers and readjusted the membrane pores by reacting with surface active groups, thereby significantly improving permeation performance while maintaining selectivity ^{[102][103]}. For example, the ARNFM flux after CA treatment was enhanced 7.1 times to 2.3 L·m⁻²·h⁻¹·bar⁻¹, and the rejection was 97.6% for MgCl₂ and 90.8% for MgSO₄ ^[101].

Moreover, the separation performance of the membrane can also be improved by controlling the interfacial polymerization process on the support layer. For example, sodium dodecyl sulfate (SDS) adsorbed onto the surface of PES support layer can effectively change the electrostatic interaction between the aqueous phase and the support layer, further reduce the migration rate of the monomer, improve the uniformity of the distribution of the monomer, reduce the interfacial tension between the water and oil phases ^[104], reduce pore plugging and the defects of the separation layer defects, and thereby promote the separation performance ^[105]. This result also confirms that it is better to use SDS solution to activate the surface of PES support than adding it into the aqueous solution ^{[105][106]}. In addition, hydrophilic additives added to the aqueous phase can also improve the permeability by increasing the surface roughness and hydrophilicity of the separation layer ^{[107][108]}.

Polyurea (PU) is an acid-resistant and mechanical strength material, which is often obtained through interfacial polymerization of amine monomers and isocyanate monomers. PU bonds with resonance structures have a higher degree of hydrogen bonding ^[109], which increases the energy barrier of C–N breakage in an acid environment. Hence, the urea linkages, being resistant to hydrolysis, bestow polyurea with excellent resistance to alkali and acid ^[110]. Polyurea membranes were first prepared as reverse osmosis membranes with a high density and poor permeability ^[111]. As a result, PU-based NF/UF membranes were almost neglected, especially in the field of NF separation of acid solution. Herein, a sample is showed. Zhang et al. used a series of isocyanate-based organic compound monomers, such as 1,4-phenylene diisocyanate (PDI), toluene diisocyanate (TDI), diphenylmethane diisocyanate (MDI), and hexamethylene diisocyanate (HDI), to react with PEI, PIP to form polyurea NF membranes via the interfacial polymerization on the PES support layer ^[112]. It indicated that PDI as the organic monomer exhibited a high reactivity. By optimizing the type and content of PDI monomer, the obtained PEI_{-0.1}/PDI_{-0.2} TFC UF membrane indicated a rejection of 97.1% for MgSO₄ and a

water flux of 0.65 L m⁻² h⁻⁻¹·bar⁻¹. Hydrogen bonds existing in urea groups in the PEI/PDI functional layer are beneficial for improving the permeation performance of the membranes. The results of static acid/alkali soaking tests corroborated that the increase in PDI content can not only enhance the degree of crosslinking, but also introduce more rigid and stable benzene rings in the PU layer, thereby promoting the stability of the TFC membrane in extreme pH conditions. Especially, after exposure to 20% (wt/v) HCl, 20% (wt/v) H₂SO₄, and 20% (wt/v) NaOH aqueous solution for one year, the PEI. $_{0.4}$ /PDI_{-0.25} membrane still preserved more than 90% of rejection for MgSO₄, revealing excellent acid/alkali-resistant ability and high stability for treating acidic and alkaline industrial wastewater.

Additionally, the integration of nanostructured materials is also used as an effective strategy to promote the permeation flux of NF because some two-dimensional layered nanofillers with ultra-high specific surface area and unique interlamellar spacing can provide more water channels ^{[113][114][115]}. Feng et al. dispersed molybdenum disulfide (MoS₂) nanosheets into aqueous solution of polyethyleneimine (PEI) by virtue of the adhesion effect of tannic acid (TA). Additionally, the positively charged polyurea NF membranes (TSPU) were prepared by interfacial polymerization of aqueous phase PEI/TA-MoS₂ and TDI organic phase on the polyvinylidene fluoride (PVDF) UF ^[116]. The optimized membrane TSPU-0.015 showed a better hydrophilicity performance and a retention performance of more than 99% for high-valence heavy metal ions, such as Fe³⁺ and Cu²⁺, and the permeation flux of TSPU-0.015 is 5.75 L·m⁻²·h⁻¹·bar⁻¹ for MgSO₄ aqueous solution, 2.88 times higher than that of undoped MoS₂ (TSPU-0), while a considerable the rejection rate of 93.18% for MgSO₄ is reached. Probably, such nanostructured material-integrated NF membranes should be further investigated in acid-stability and separation performance in acidic environments.

Hence, due to a high crosslinking degree and strong acid-/alkali resistance, as well as high mechanical strength in separation layer, PU membranes need to be widely investigated and probably provide a promising candidate for the application in the separation of extreme acid or alkali wastewater industry.

In addition to polymeric nanofiltration membranes, which are typically manufactured via interfacial polymerization, another large class of nanofiltration membrane systems are ceramic membranes $^{[117]}$. In terms of layer structure (with separation, transition, and support layers), ceramic membranes are similar to polymer membranes $^{[118][119]}$ and have similar separation mechanism (with size sieving and the Donnan effect) $^{[120]}$. However, most ceramic membranes have a larger pore size and molecular weight cutoff (MWCO) $^{[121]}$. Ceramic NF also showed good performance in the treatment of printing and dyeing wastewater (removal of dyes and separation of salts) $^{[122][123][124]}$. Moreover, many studies have shown that ceramic NFs perform were worse than polymeric NFs in terms of salt rejection $^{[121][125]}$. However, ceramic membranes offer better operational stability, high temperature stability, and cleaning stability $^{[122][123]}$. In extreme application circumstances, ceramic membranes typically exhibit good solvent stability $^{[127][128]}$. However, most ceramic membranes are limited by the substrate material (γ -Al₂O₃) and have a pH tolerance range of 2–11, showing slightly better acid resistance than PA membranes. Ceramic membrane materials with excellent acid resistance, such as TiO₂ $^{[73]}$ and SiOC $^{[129]}$, are generally more expensive $^{[130]}$. Current research on the scaling up of ceramic membranes for applications is incomplete and needs to be further explored $^{[131]}$.

References

- 1. Reid, C.E.; Breton, E.J. Water and Ion Flow across Cellulosic Membranes. J. Appl. Polym. Sci. 1959, 1, 133–143.
- 2. Petersen, R.J. Composite Reverse Osmosis and Nanofiltration Membranes. J. Membr. Sci. 1993, 83, 81–150.
- Feng, X.; Peng, D.; Zhu, J.; Wang, Y.; Zhang, Y. Recent Advances of Loose Nanofiltration Membranes for Dye/Salt Sep aration. Sep. Purif. Technol. 2022, 285, 120228.
- 4. Xu, S.; He, R.; Dong, C.; Sun, N.; Zhao, S.; He, H.; Yu, H.; Zhang, Y.-B.; He, T. Acid Stable Layer-by-Layer Nanofiltratio n Membranes for Phosphoric Acid Purification. J. Membr. Sci. 2022, 644, 120090.
- Machado, M.T.C.; Trevisan, S.; Pimentel-Souza, J.D.R.; Pastore, G.M.; Hubinger, M.D. Clarification and Concentration of Oligosaccharides from Artichoke Extract by a Sequential Process with Microfiltration and Nanofiltration Membranes. J. Food Eng. 2016, 180, 120–128.
- Suhalim, N.S.; Kasim, N.; Mahmoudi, E.; Shamsudin, I.J.; Mohammad, A.W.; Mohamed Zuki, F.; Jamari, N.L.-A. Rejecti on Mechanism of Ionic Solute Removal by Nanofiltration Membranes: An Overview. Nanomaterials 2022, 12, 437.
- 7. Zhang, Z.; Fan, K.; Liu, Y.; Xia, S. A Review on Polyester and Polyester-Amide Thin Film Composite Nanofiltration Mem branes: Synthesis, Characteristics and Applications. Sci. Total Environ. 2023, 858, 159922.
- 8. Mirza, S. Reduction of Energy Consumption in Process Plants Using Nanofiltration and Reverse Osmosis. Desalination 2008, 224, 132–142.

- 9. Mallakpour, S.; Azadi, E. Nanofiltration Membranes for Food and Pharmaceutical Industries. Emergent Mater. 2021, 5, 1329–1343.
- 10. Cao, Y.; Chen, G.; Wan, Y.; Luo, J. Nanofiltration Membrane for Bio-separation: Process-oriented Materials Innovation. Eng. Life Sci. 2021, 21, 405–416.
- 11. Suo, Y.; Ren, Y. Research on the Mechanism of Nanofiltration Membrane Fouling in Zero Discharge Process of High S alty Wastewater from Coal Chemical Industry. Chem. Eng. Sci. 2021, 245, 116810.
- Zimmermann, Y.-S.; Niewersch, C.; Lenz, M.; Kül, Z.Z.; Corvini, P.F.-X.; Schäffer, A.; Wintgens, T. Recycling of Indium F rom CIGS Photovoltaic Cells: Potential of Combining Acid-Resistant Nanofiltration with Liquid–Liquid Extraction. Enviro n. Sci. Technol. 2014, 48, 13412–13418.
- 13. Darvishmanesh, S.; Robberecht, T.; Luis, P.; Degrève, J.; Van der Bruggen, B. Performance of Nanofiltration Membran es for Solvent Purification in the Oil Industry. J. Am. Oil Chem. Soc. 2011, 88, 1255–1261.
- 14. Cheng, X.; Lai, C.; Zhu, X.; Shao, S.; Xu, J.; Zhang, F.; Song, J.; Wu, D.; Liang, H.; Luo, X. Tailored Ultra-Low Pressure Nanofiltration Membranes for Advanced Drinking Water Treatment. Desalination 2023, 548, 116264.
- 15. Sharma, V.; Borkute, G.; Gumfekar, S.P. Biomimetic Nanofiltration Membranes: Critical Review of Materials, Structures, and Applications to Water Purification. Chem. Eng. J. 2022, 433, 133823.
- 16. Werber, J.R.; Osuji, C.O.; Elimelech, M. Materials for Next-Generation Desalination and Water Purification Membranes. Nat. Rev. Mater. 2016, 1, 16018.
- Wadekar, S.S.; Hayes, T.; Lokare, O.R.; Mittal, D.; Vidic, R.D. Laboratory and Pilot-Scale Nanofiltration Treatment of Ab andoned Mine Drainage for the Recovery of Products Suitable for Industrial Reuse. Ind. Eng. Chem. Res. 2017, 56, 73 55–7364.
- 18. Zhang, C.; Zhang, W.; Wang, Y. Diffusion Dialysis for Acid Recovery from Acidic Waste Solutions: Anion Exchange Me mbranes and Technology Integration. Membranes 2020, 10, 169.
- 19. Wang, P.; Dong, F.; He, D.; Liu, S.; Chen, N.; Huo, T. Organic Acid Mediated Photoelectrochemical Reduction of U(vi) t o U(Iv) in Waste Water: Electrochemical Parameters and Spectroscopy. RSC Adv. 2021, 11, 23241–23248.
- 20. Naidu, G.; Ryu, S.; Thiruvenkatachari, R.; Choi, Y.; Jeong, S.; Vigneswaran, S. A Critical Review on Remediation, Reus e, and Resource Recovery from Acid Mine Drainage. Environ. Pollut. 2019, 247, 1110–1124.
- 21. San Román, M.F.; Ortiz Gándara, I.; Ibañez, R.; Ortiz, I. Hybrid Membrane Process for the Recovery of Major Compon ents (Zinc, Iron and HCl) from Spent Pickling Effluents. J. Membr. Sci. 2012, 415–416, 616–623.
- Yin, C.; Yu, S.; An, B.; Lou, Z.; Huang, S.; Yuan, H.; Zhu, N. Fluorine Recovery from Etching Wastewater through CaF2
 -Based near-Infrared Photocatalyst Synthesis. J. Clean. Prod. 2018, 175, 267–275.
- 23. United Nations Educational, Scientific, and Cultural Organization. The United Nations World Water Development Report 2020; UNESCO: Perugia, Italy, 2020; Available online: https://unesdoc.unesco.org/ark:/48223/pf0000372876.locale=e n (accessed on 21 March 2020).
- 24. Meese, A.F.; Kim, D.J.; Wu, X.; Le, L.; Napier, C.; Hernandez, M.T.; Laroco, N.; Linden, K.G.; Cox, J.; Kurup, P.; et al. O pportunities and Challenges for Industrial Water Treatment and Reuse. ACS ES T Eng. 2021, 2, 465–488.
- Yang, C.; Pan, J.; Zhu, D.; Guo, Z.; Li, X. Pyrometallurgical Recycling of Stainless Steel Pickling Sludge: A Review. J. Ir on Steel Res. Int. 2019, 26, 547–557.
- 26. Das, P.; Mondal, G.C.; Singh, S.; Singh, A.K.; Prasad, B.; Singh, K.K. Effluent Treatment Technologies in the Iron and S teel Industry—A State of the Art Review. Water Environ. Res. 2018, 90, 395–408.
- 27. Wu, J.; Li, Q.; Li, W.; Li, Y.; Wang, G.; Li, A.; Li, H. Efficient Removal of Acid Dyes Using Permanent Magnetic Resin an d Its Preliminary Investigation for Advanced Treatment of Dyeing Effluents. J. Clean. Prod. 2020, 251, 119694.
- 28. Liu, H.; Xia, J.; Cui, K.; Meng, J.; Zhang, R.; Cao, B.; Li, P. Fabrication of High-Performance Pervaporation Membrane f or Sulfuric Acid Recovery via Interfacial Polymerization. J. Membr. Sci. 2021, 624, 119108.
- Roy, S.; Majumdar, S.; Sahoo, G.C.; Bhowmick, S.; Kundu, A.K.; Mondal, P. Removal of As(V), Cr(VI) and Cu(II) Using Novel Amine Functionalized Composite Nanofiltration Membranes Fabricated on Ceramic Tubular Substrate. J. Hazar d. Mater. 2020, 399, 122841.
- Foureaux, A.F.S.; Moreira, V.R.; Lebron, Y.A.R.; Santos, L.V.S.; Amaral, M.C.S. Direct Contact Membrane Distillation as an Alternative to the Conventional Methods for Value-Added Compounds Recovery from Acidic Effluents: A Review. Se p. Purif. Technol. 2020, 236, 116251.
- Skousen, J.G.; Ziemkiewicz, P.F.; McDonald, L.M. Acid Mine Drainage Formation, Control and Treatment: Approaches and Strategies. Extract Ind. Soc. 2019, 6, 241–249.

- 32. Kesieme, U.K.; Aral, H. Application of Membrane Distillation and Solvent Extraction for Water and Acid Recovery from Acidic Mining Waste and Process Solutions. J. Environ. Chem. Eng. 2015, 3, 2050–2056.
- 33. Ju, J.; Feng, Y.; Li, H.; Liu, S.; Xu, C. Separation and Recovery of V, Ti, Fe and Ca from Acidic Wastewater and Vanadi um-Bearing Steel Slag Based on a Collaborative Utilization Process. Sep. Purif. Technol. 2021, 276, 119335.
- Iakovleva, E.; Sillanpää, M. The Use of Low-Cost Adsorbents for Wastewater Purification in Mining Industries. Environ. Sci. Pollut. Res. 2013, 20, 7878–7899.
- 35. Liu, J.; Wei, S.; Zhang, H.; Deng, Y.; Baeyens, J.; Dewil, R.; Sweygers, N.; Appels, L. Adsorption of Acid Fuchsine Dye f rom Wastewater by Mg-Ferrite Particles. J. Environ. Manag. 2022, 317, 115427.
- Işık, M.; Sponza, D.T. Biological Treatment of Acid Dyeing Wastewater Using a Sequential Anaerobic/Aerobic Reactor System. Enzyme Microb. Technol. 2006, 38, 887–892.
- 37. You, S.; Lu, J.; Tang, C.Y.; Wang, X. Rejection of Heavy Metals in Acidic Wastewater by a Novel Thin-Film Inorganic Fo rward Osmosis Membrane. Chem. Eng. J. 2017, 320, 532–538.
- 38. Cui, K.; Li, P.; Zhang, R.; Cao, B. Preparation of Pervaporation Membranes by Interfacial Polymerization for Acid Waste water Purification. Chem. Eng. Res. Des. 2020, 156, 171–179.
- Agrawal, A.; Kumari, S.; Ray, B.C.; Sahu, K.K. Extraction of Acid and Iron Values from Sulphate Waste Pickle Liquor of a Steel Industry by Solvent Extraction Route. Hydrometallurgy 2007, 88, 58–66.
- 40. Kesieme, U.; Chrysanthou, A.; Catulli, M.; Cheng, C.Y. A Review of Acid Recovery from Acidic Mining Waste Solutions Using Solvent Extraction. J. Chem. Technol. Biotechnol. 2018, 93, 3374–3385.
- Dalvand, A.; Nabizadeh, R.; Reza Ganjali, M.; Khoobi, M.; Nazmara, S.; Hossein Mahvi, A. Modeling of Reactive Blue 1
 9 Azo Dye Removal from Colored Textile Wastewater Using L-Arginine-Functionalized Fe3O4 Nanoparticles: Optimizati on, Reusability, Kinetic and Equilibrium Studies. J. Magn. Magn. Mater. 2016, 404, 179–189.
- 42. Liu, J.; Wang, N.; Zhang, H.; Baeyens, J. Adsorption of Congo Red Dye on FexCo3-XO4 Nanoparticles. J. Environ. Ma nag. 2019, 238, 473–483.
- 43. Kuai, L.; De Vreese, I.; Vandevivere, P.; Verstraete, W. GAC-Amended UASB Reactor for the Stable Treatment of Toxic Textile Wastewater. Environ. Technol. 1998, 19, 1111–1117.
- 44. Bargeman, G. Recent Developments in the Preparation of Improved Nanofiltration Membranes for Extreme PH Conditi ons. Sep. Purif. Technol. 2021, 279, 119725.
- 45. Scott, K.; Hughes, R. Industrial Membrane Separation Technology; Springer: Dordrecht, The Netherlands, 1996.
- 46. Fane, A.T.; Wang, R.; Jia, Y. Membrane Technology: Past, Present and Future; Humana Press: Totowa, NJ, USA, 2010; pp. 1–45.
- 47. López, J.; Gibert, O.; Cortina, J.L. Integration of Membrane Technologies to Enhance the Sustainability in the Treatmen t of Metal-Containing Acidic Liquid Wastes. An Overview. Sep. Purif. Technol. 2021, 265, 118485.
- 48. Pino, L.; Beltran, E.; Schwarz, A.; Ruiz, M.C.; Borquez, R. Optimization of Nanofiltration for Treatment of Acid Mine Drai nage and Copper Recovery by Solvent Extraction. Hydrometallurgy 2020, 195, 105361.
- 49. Szymczyk, A.; Fievet, P. Ion Transport through Nanofiltration Membranes: The Steric, Electric and Dielectric Exclusion Model. Desalination 2006, 200, 122–124.
- 50. Liu, X.; Gong, W.; Liu, L. Treatment of Sulfate-Rich and Low PH Wastewater by Sulfate Reducing Bacteria with Iron Sh avings in a Laboratory. Water Sci. Technol. 2013, 69, 595–600.
- Cheng, W.; Liu, C.; Tong, T.; Epsztein, R.; Sun, M.; Verduzco, R.; Ma, J.; Elimelech, M. Selective Removal of Divalent Cations by Polyelectrolyte Multilayer Nanofiltration Membrane: Role of Polyelectrolyte Charge, Ion Size, and Ionic Stre ngth. J. Membr. Sci. 2018, 559, 98–106.
- Bowen, W.R.; Welfoot, J.S. Modelling the Performance of Membrane Nanofiltration—Critical Assessment and Model D evelopment. Chem. Eng. Sci. 2002, 57, 1121–1137.
- 53. Ryzhkov, I.I.; Minakov, A.V. Theoretical Study of Electrolyte Transport in Nanofiltration Membranes with Constant Surfa ce Potential/Charge Density. J. Membr. Sci. 2016, 520, 515–528.
- 54. Epsztein, R.; DuChanois, R.M.; Ritt, C.L.; Noy, A.; Elimelech, M. Towards Single-Species Selectivity of Membranes with Subnanometre Pores. Nat. Nanotechnol. 2020, 15, 426–436.
- 55. Deen, W.M. Hindered Transport of Large Molecules in Liquid-Filled Pores. AIChE J. 1987, 33, 1409–1425.
- Venkataraman, L.; Klare, J.E.; Nuckolls, C.; Hybertsen, M.S.; Steigerwald, M.L. Dependence of Single-Molecule Juncti on Conductance on Molecular Conformation. Nature 2006, 442, 904–907.

- 57. Weigelt, S.; Busse, C.; Petersen, L.; Rauls, E.; Hammer, B.; Gothelf, K.V.; Besenbacher, F.; Linderoth, T.R. Chiral Switc hing by Spontaneous Conformational Change in Adsorbed Organic Molecules. Nat. Mater. 2006, 5, 112–117.
- 58. Dechadilok, P.; Deen, W.M. Hindrance Factors for Diffusion and Convection in Pores. Ind. Eng. Chem. Res. 2006, 45, 6 953–6959.
- 59. Ennis, J.; Zhang, H.; Stevens, G.; Perera, J.; Scales, P.; Carnie, S. Mobility of Protein through a Porous Membrane. J. Membr. Sci. 1996, 119, 47–58.
- 60. Renkin, E. Filtration, diffusion, and molecular sieving through porous cellulose membranes. J. Gen. Physiol. 1954, 38, 225–243.
- 61. Luo, J.; Wan, Y. Effects of PH and Salt on Nanofiltration—A Critical Review. J. Membr. Sci. 2013, 438, 18–28.
- 62. Cao, Y.; Zhang, H.; Guo, S.; Luo, J.; Wan, Y. A Robust Dually Charged Membrane Prepared via Catechol-Amine Chemi stry for Highly Efficient Dye/Salt Separation. J. Membr. Sci. 2021, 629, 119287.
- 63. Nghiem, L.D.; Schäfer, A.I.; Elimelech, M. Role of Electrostatic Interactions in the Retention of Pharmaceutically Active Contaminants by a Loose Nanofiltration Membrane. J. Membr. Sci. 2006, 286, 52–59.
- 64. Huang, B.-Q.; Tang, Y.-J.; Gao, A.-R.; Zeng, Z.-X.; Xue, S.-M.; Ji, C.-H.; Tang, C.Y.; Xu, Z.-L. Dually Charged Polyamid e Nanofiltration Membranes Fabricated by Microwave-Assisted Grafting for Heavy Metals Removal. J. Membr. Sci. 202 1, 640, 119834.
- 65. Guastalli, A.R.; Labanda, J.; Llorens, J. Separation of Phosphoric Acid from an Industrial Rinsing Water by Means of N anofiltration. Desalination 2009, 243, 218–228.
- 66. Novalic, S.; Dabrowski, A.; Kulbe, K.D. Nanofiltration of Caustic and Acidic Cleaning Solutions with High COD Part 2. R ecycling of HNO3. J. Food Eng. 1998, 38, 133–140.
- 67. O'Connor, C. Acidic and Basic Amide Hydrolysis. Q. Rev., Chem. Soc. 1970, 24, 553.
- Hoseinpour, H.; Peyravi, M.; Nozad, A.; Jahanshahi, M. Static and Dynamic Assessments of Polysulfonamide and Poly (Amide-Sulfonamide) Acid-Stable Membranes. J. Taiwan Inst. Chem. Eng. 2016, 67, 453–466.
- 69. Ilias, S.; Schimmel, K.A.; Assey, G.E.J.M. Effect of Viscosity on Membrane Fluxes in Cross-Flow Ultrafiltration. Sep. Sc i. Technol. 1995, 30, 1669–1687.
- 70. Castricum, H.L.; Kreiter, R.; van Veen, H.M.; Blank, D.H.A.; Vente, J.F.; ten Elshof, J.E. High-Performance Hybrid Perv aporation Membranes with Superior Hydrothermal and Acid Stability. J. Membr. Sci. 2008, 324, 111–118.
- 71. Childress, A.E.; Elimelech, M. Effect of Solution Chemistry on the Surface Charge of Polymeric Reverse Osmosis and Nanofiltration Membranes. J. Membr. Sci. 1996, 119, 253–268.
- 72. Tanninen, J. Long-Term Acid Resistance and Selectivity of NF Membranes in Very Acidic Conditions. J. Membr. Sci. 20 04, 240, 11–18.
- 73. López, J.; Reig, M.; Vecino, X.; Gibert, O.; Cortina, J.L. Comparison of Acid-Resistant Ceramic and Polymeric Nanofiltr ation Membranes for Acid Mine Waters Treatment. Chem. Eng. J. 2020, 382, 122786.
- 74. Wang, H.; Wei, Z.; Wang, H.; Jiang, H.; Li, Y.; Wu, C. An Acid-Stable Positively Charged Polysulfonamide Nanofiltration Membrane Prepared by Interfacial Polymerization of Polyallylamine and 1,3-Benzenedisulfonyl Chloride for Water Treat ment. RSC Adv. 2019, 9, 2042–2054.
- 75. Yu, S.; Zhou, Q.; Shuai, S.; Yao, G.; Ma, M.; Gao, C. Thin-Film Composite Nanofiltration Membranes with Improved Aci d Stability Prepared from Naphthalene-1,3,6-Trisulfonylchloride (NTSC) and Trimesoyl Chloride (TMC). Desalination 20 13, 315, 164–172.
- Bali Eslami, A.; Peyravi, M.; Jahanshahi, M.; Hosseinpour, H. Polysulfonamide Coating Layer Polymerized By1,3-Disulf onyl Chloride and Polyethylenimine to Achieve Acid Resistant TFC Membranes. Chem. Eng. Res. Des. 2020, 155, 172 –179.
- 77. Li, Y.; Su, Y.; Dong, Y.; Zhao, X.; Jiang, Z.; Zhang, R.; Zhao, J. Separation Performance of Thin-Film Composite Nanofil tration Membrane through Interfacial Polymerization Using Different Amine Monomers. Desalination 2014, 333, 59–65.
- Liu, M.; Yao, G.; Cheng, Q.; Ma, M.; Yu, S.; Gao, C. Acid Stable Thin-Film Composite Membrane for Nanofiltration Prep ared from Naphthalene-1,3,6-Trisulfonylchloride (NTSC) and Piperazine (PIP). J. Membr. Sci. 2012, 415–416, 122–13
 1.
- 79. Liang, Y.; Zhu, Y.; Liu, C.; Lee, K.-R.; Hung, W.-S.; Wang, Z.; Li, Y.; Elimelech, M.; Jin, J.; Lin, S. Polyamide Nanofiltrati on Membrane with Highly Uniform Sub-Nanometre Pores for Sub-1 Å Precision Separation. Nat. Commun. 2020, 11, 2 015.

- 80. Liu, S. Effect of Diamine Composition on the Gas Transport Properties in 6FDA-Durene/3,3'-Diaminodiphenyl Sulfone Copolyimides. J. Membr. Sci. 2002, 202, 165–176.
- Lasisi, K.H.; Ajibade, T.F.; Zhang, K. 3, 3'-Diaminodiphenyl Sulfone Engagement in Polysulfonamide-Based Acid-Resist ant Nanofiltration Membrane Fabrication for Efficient Separation Performance and Heavy Metal Ions Removal from Wa stewater. J. Membr. Sci. 2022, 661, 120909.
- 82. Lai, W.; Shan, L.; Bai, J.; Xiao, L.; Liu, L.; Wang, S.; Gong, L.; Jiao, Y.; Xie, W.; Liu, H.; et al. Highly Permeable and Aci d-Resistant Nanofiltration Membrane Fabricated by in-Situ Interlaced Stacking of COF and Polysulfonamide Films. Che m. Eng. J. 2022, 450, 137965.
- Zhu, Y.; Dou, P.; He, H.; Lan, H.; Xu, S.; Zhang, Y.; He, T.; Niu, J. Improvement of Permeability and Rejection of an Acid Resistant Polysulfonamide Thin-Film Composite Nanofiltration Membrane by a Sulfonated Poly(Ether Ether Ketone) Int erlayer. Sep. Purif. Technol. 2020, 239, 116528.
- Ali, M.E.A.; Wang, L.; Wang, X.; Feng, X. Thin Film Composite Membranes Embedded with Graphene Oxide for Water Desalination. Desalination 2016, 386, 67–76.
- 85. Farahbakhsh, J.; Delnavaz, M.; Vatanpour, V. Investigation of Raw and Oxidized Multiwalled Carbon Nanotubes in Fabr ication of Reverse Osmosis Polyamide Membranes for Improvement in Desalination and Antifouling Properties. Desalin ation 2017, 410, 1–9.
- 86. Khorshidi, B.; Biswas, I.; Ghosh, T.; Thundat, T.; Sadrzadeh, M. Robust Fabrication of Thin Film Polyamide-TiO2 Nanoc omposite Membranes with Enhanced Thermal Stability and Anti-Biofouling Propensity. Sci. Rep. 2018, 8, 784.
- Wang, H.; Wang, H.; Jiang, H.; Sheng, A.; Wei, Z.; Li, Y.; Wu, C.; Li, H. Positively Charged Polysulfonamide Nanocomp osite Membranes Incorporating Hydrophilic Triazine-Structured COFs for Highly Efficient Nanofiltration. ACS Appl. Nan o Mater. 2020, 3, 9329–9339.
- Paltrinieri, L.; Remmen, K.; Müller, B.; Chu, L.; Köser, J.; Wintgens, T.; Wessling, M.; de Smet, L.C.P.M.; Sudhölter, E.J. R. Improved Phosphoric Acid Recovery from Sewage Sludge Ash Using Layer-by-Layer Modified Membranes. J. Memb r. Sci. 2019, 587, 117162.
- Yuan, T.; Hu, Y.; He, M.; Zhao, S.; Lan, H.; Li, P.; Jason Niu, Q. Spinning-assist Layer-by-layer Assembled Polysulfona mide Membrane for Reverse Osmosis from Naphthalene-1,3,6-trisulfonylchloride and Piperazine. J. Appl. Polym. Sci. 2 018, 136, 47138.
- He, M.; Yuan, T.; Dong, W.; Li, P.; Jason Niu, Q.; Meng, J. High-Performance Acid-Stable Polysulfonamide Thin-Film C omposite Membrane Prepared via Spinning-Assist Multilayer Interfacial Polymerization. J. Mater. Sci. 2018, 54, 886–90 0.
- Lee, K.P.; Zheng, J.; Bargeman, G.; Kemperman, A.J.B.; Benes, N.E. PH Stable Thin Film Composite Polyamine Nanof iltration Membranes by Interfacial Polymerisation. J. Membr. Sci. 2015, 478, 75–84.
- Zeng, Y.; Wang, L.; Zhang, L.; Yu, J.Q. An Acid Resistant Nanofiltration Membrane Prepared from a Precursor of Poly(s -Triazine-Amine) by Interfacial Polymerization. J. Membr. Sci. 2018, 546, 225–233.
- Just, G.; Pokorny, I.; Pritzkow, W. Kinetic studies on the Reaction of Cyanuric Chloride with Amines. J. Prakt. Chem. 19 95, 337, 133–135.
- Fierz-David, H.E.; Matter, M. Azo and Anthraquinonoid Dyes Containing the Cyanuric Ring. J. Soc. Dyers Colour. 1937, 53, 424–436.
- Lee, K.P.; Bargeman, G.; de Rooij, R.; Kemperman, A.J.B.; Benes, N.E. Interfacial Polymerization of Cyanuric Chloride and Monomeric Amines: PH Resistant Thin Film Composite Polyamine Nanofiltration Membranes. J. Membr. Sci. 2017, 523, 487–496.
- Liu, S.; Wu, C.; Hung, W.-S.; Lu, X.; Lee, K.-R. One-Step Constructed Ultrathin Janus Polyamide Nanofilms with Oppos ite Charges for Highly Efficient Nanofiltration. J. Mater. Chem. A 2017, 5, 22988–22996.
- Yu, L.; Zhang, Y.; Xu, L.; Liu, Q.; Borjigin, B.; Hou, D.; Xiang, J.; Wang, J. One Step Prepared Janus Acid-Resistant Na nofiltration Membranes with Opposite Surface Charges for Acidic Wastewater Treatment. Sep. Purif. Technol. 2020, 25 0, 117245.
- He, B.; Peng, H.; Chen, Y.; Zhao, Q. High Performance Polyamide Nanofiltration Membranes Enabled by Surface Modif ication of Imidazolium Ionic Liquid. J. Membr. Sci. 2020, 608, 118202.
- 99. Xiao, H.-F.; Chu, C.-H.; Xu, W.-T.; Chen, B.-Z.; Ju, X.-H.; Xing, W.; Sun, S.-P. Amphibian-Inspired Amino Acid Ionic Liqu id Functionalized Nanofiltration Membranes with High Water Permeability and Ion Selectivity for Pigment Wastewater T reatment. J. Membr. Sci. 2019, 586, 44–52.

- 100. Bai, J.; Lai, W.; Gong, L.; Xiao, L.; Wang, G.; Shan, L.; Luo, S. Ionic Liquid Regulated Interfacial Polymerization Proces s to Improve Acid-Resistant Nanofiltration Membrane Permeance. J. Membr. Sci. 2022, 641, 119882.
- 101. Yu, L.; Li, K.; Zhang, Y.; Wang, J.; Zhang, G. Improved Permeability of Tight Acid Resistant Nanofiltration Membrane vi a Citric Acid Post-Treatment. J. Membr. Sci. 2022, 648, 120381.
- 102. Jun, B.-M.; Lee, H.K.; Kwon, Y.-N. Acid-Catalyzed Hydrolysis of Semi-Aromatic Polyamide NF Membrane and Its Applic ation to Water Softening and Antibiotics Enrichment. Chem. Eng. J. 2018, 332, 419–430.
- 103. Ren, Y.; Zhu, J.; Feng, S.; Chen, X.; Luo, J.; Wan, Y. Tuning Pore Size and Surface Charge of Poly(Piperazinamide) Na nofiltration Membrane by Enhanced Chemical Cleaning Treatment. J. Membr. Sci. 2022, 643, 120054.
- 104. Şakar-Deliormanlı, A. Interaction of Sodium Dodecyl Sulfate with Poly(Ethyleneimine) in Bulk Solution and at the Air-So lution Interface. J. Dispers. Sci. Technol. 2009, 31, 23–30.
- 105. Bai, L.; Wang, M.; Yang, H.; Peng, Z.; Zhao, Y.; Li, Z. A Nanofiltration Membrane Fabricated on a Surfactant Activated S ubstrate with Improved Separation Performance and Acid Resistance. New J. Chem. 2021, 45, 14381–14391.
- 106. Mansourpanah, Y.; Alizadeh, K.; Madaeni, S.S.; Rahimpour, A.; Soltani Afarani, H. Using Different Surfactants for Chan ging the Properties of Poly(Piperazineamide) TFC Nanofiltration Membranes. Desalination 2011, 271, 169–177.
- 107. Lasisi, K.H.; Yao, W.; Xue, Q.; Liu, Q.; Zhang, K. High Performance Polyamine-Based Acid-Resistant Nanofiltration Me mbranes Catalyzed with 1,4-Benzenecarboxylic Acid in Interfacial Cross-Linking Polymerization Process. J. Membr. Sc i. 2021, 640, 119833.
- 108. Lasisi, K.H.; Zhang, K. Polyamine-Based Thin-Film Composite Nanofiltration Membrane Embedded with Catalytic Che mical Additive for Enhanced Separation Performance and Acid Stability. J. Membr. Sci. 2022, 644, 120155.
- 109. Sendijarevic, V.; Sendijarevic, A.; Sendijarevic, I.; Bailey, R.E.; Pemberton, D.; Reimann, K.A. Hydrolytic Stability of Tol uene Diisocyanate and Polymeric Methylenediphenyl Diisocyanate Based Polyureas under Environmental Conditions. Environ. Sci. Technol. 2004, 38, 1066–1072.
- 110. Iqbal, N.; Tripathi, M.; Parthasarathy, S.; Kumar, D.; Roy, P.K. Polyurea Coatings for Enhanced Blast-Mitigation: A Revie w. RSC Adv. 2016, 6, 109706–109717.
- 111. Cadotte, J.E. Reverse Osmosis Membrane. US. Patent 4 (39) (1977) 440, 2 August 1977.
- 112. Zhang, Y.; Wan, Y.; Li, Y.; Pan, G.; Yu, H.; Du, W.; Shi, H.; Wu, C.; Liu, Y. Thin-Film Composite Nanofiltration Membrane Based on Polyurea for Extreme PH Condition. J. Membr. Sci. 2021, 635, 119472.
- 113. Amirilargani, M.; Sadrzadeh, M.; Sudhölter, E.J.R.; de Smet, L.C.P.M. Surface Modification Methods of Organic Solvent Nanofiltration Membranes. Chem. Eng. J. 2016, 289, 562–582.
- 114. Liu, P.; Hou, J.; Zhang, Y.; Li, L.; Lu, X.; Tang, Z. Two-Dimensional Material Membranes for Critical Separations. Inorg. Chem. Front. 2020, 7, 2560–2581.
- 115. Liu, Y.; Zhao, Y.; Zhang, X.; Huang, X.; Liao, W.; Zhao, Y. MoS2-Based Membranes in Water Treatment and Purificatio n. Chem. Eng. J. 2021, 422, 130082.
- 116. Feng, Y.; Meng, X.; Wu, Z.; Chen, J.; Sun, C.; Huo, S. A Novel Polyurea Nanofiltration Membrane Constructed by PEI/T A-MoS2 for Efficient Removal of Heavy Metal Ions. Sep. Purif. Technol. 2022, 300, 121785.
- 117. He, Z.; Lyu, Z.; Gu, Q.; Zhang, L.; Wang, J. Ceramic-Based Membranes for Water and Wastewater Treatment. Colloids Surf. A 2019, 578, 123513.
- 118. Pendergast, M.M.; Hoek, E.M.V. A Review of Water Treatment Membrane Nanotechnologies. Energy Environ. Sci. 201 1, 4, 1946.
- 119. Árki, P.; Hecker, C.; Tomandl, G.; Joseph, Y. Streaming Potential Properties of Ceramic Nanofiltration Membranes–Imp ortance of Surface Charge on the Ion Rejection. Sep. Purif. Technol. 2019, 212, 660–669.
- 120. Mohammad, A.W.; Teow, Y.H.; Ang, W.L.; Chung, Y.T.; Oatley-Radcliffe, D.L.; Hilal, N. Nanofiltration Membranes Revie w: Recent Advances and Future Prospects. Desalination 2015, 356, 226–254.
- 121. Guo, H.; Zhao, S.; Wu, X.; Qi, H. Fabrication and Characterization of TiO2/ZrO2 Ceramic Membranes for Nanofiltration. Microporous Mesoporous Mater. 2018, 260, 125–131.
- 122. Benfer, S.; Árki, P.; Tomandl, G. Ceramic Membranes for Filtration Applications—Preparation and Characterization. Ad v. Eng. Mater. 2004, 6, 495–500.
- 123. Chen, P.; Ma, X.; Zhong, Z.; Zhang, F.; Xing, W.; Fan, Y. Performance of Ceramic Nanofiltration Membrane for Desalina tion of Dye Solutions Containing NaCl and Na2SO4. Desalination 2017, 404, 102–111.
- 124. Weber, R.; Chmiel, H.; Mavrov, V. Characteristics and Application of Ceramic Nanofiltration Membranes. Ann. N. Y. Aca d. Sci. 2003, 984, 178–193.

- 125. Fujioka, T.; Khan, S.J.; McDonald, J.A.; Nghiem, L.D. Nanofiltration of Trace Organic Chemicals: A Comparison betwee n Ceramic and Polymeric Membranes. Sep. Purif. Technol. 2014, 136, 258–264.
- 126. Tomczak, W.; Gryta, M. Comparison of Polypropylene and Ceramic Microfiltration Membranes Applied for Separation of 1,3-PD Fermentation Broths and Saccharomyces Cerevisiae Yeast Suspensions. Membranes 2021, 11, 44.
- 127. Saw, E.T.; Ang, K.L.; He, W.; Dong, X.; Ramakrishna, S. Molecular Sieve Ceramic Pervaporation Membranes in Solven t Recovery: A Comprehensive Review. J. Environ. Chem. Eng. 2019, 7, 103367.
- 128. Liu, T.; Qin, Z.; Liu, Q.; Li, X.; Liu, Y.; An, Q.-F.; Guo, H. In Situ Growth of a Tubular MoS2 Membrane on a Ceramic Tub e with Improved Organic Solvent Nanofiltration Performance. Mater. Chem. Front. 2021, 5, 3184–3191.
- 129. Guo, F.; Su, D.; Liu, Y.; Wang, J.; Yan, X.; Chen, J.; Chen, S. High Acid Resistant SiOC Ceramic Membranes for Waste water Treatment. Ceram. Int. 2018, 44, 13444–13448.
- Issaoui, M.; Limousy, L. Low-Cost Ceramic Membranes: Synthesis, Classifications, and Applications. C. R. Chim. 2019, 22, 175–187.
- 131. Voigt, I.; Richter, H.; Stahn, M.; Weyd, M.; Puhlfürß, P.; Prehn, V.; Günther, C. Scale-up of Ceramic Nanofiltration Memb ranes to Meet Large Scale Applications. Sep. Purif. Technol. 2019, 215, 329–334.

Retrieved from https://encyclopedia.pub/entry/history/show/89971