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Condition-based maintenance (CBM) is a maintenance policy that maintains the reliability of system operation and

reduces the downtime of the system. Prognostics and health management (PHM) has attracted much attention as

the enabler of CBM. The PHM aims to predict the remaining useful life (RUL) of the system and suggest an optimal
health management strategy.

system-level prognostics performance remaining useful life dependency

| 1. Introduction

Condition-based maintenance (CBM) is a maintenance policy that maintains the reliability of system operation and
reduces the downtime of the system. Prognostics and health management (PHM) has attracted much attention as
the enabler of CBM. The PHM aims to predict the remaining useful life (RUL) of the system and suggest an optimal
health management strategy. The PHM consists of four main stages: sensing, diagnostics, prognostics, and health
management, which are illustrated in Figure 1. In the sensing stage, PHM engineers determine what to measure
and which kind of sensors to install. Health diagnostics is the process of evaluating the degree of damage
significance and identifying the root causes of failure. In other words, it focuses on the current operability of the
system at stake. On the other hand, health prognostics aims to provide information about the future operability of
the system. Prognostics includes establishing a failure precursor which indicates an incipient degradation of the
system and estimates the RUL based on the current health state and expected future operating conditions .
Finally, the health management of the system is performed based on the information obtained from diagnostics and
prognostics. Each step has its own challenges. For example, effective sensor network design for sensing &,
feature extraction, observability analysis, and diagnostics algorithm for fault diagnostics El4IEl development of
prognostics algorithm 8, and proper system operation strategy for health management . In view of the CBM,
however, the prognostics is the most important since it enables the proactive maintenance plan L8, This article

focuses on the prognostics of complex systems that are encountered in the real industry.
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Figure 1. Levels of prognostics and health management.

To date, there are many valuable review papers and books in the PHM with diverse aspects such as the general
process of PHM LIRS nre-processing L84 and prognostics algorithms L8IIL20[21[22]  For
example, Lee et al. & provided a comprehensive review of the PHM followed by an introduction of a systematic
PHM design methodology for converting data into prognostic information. Lei et al. 24! provided a systematic
review of machinery prognostics from the data acquisition to the RUL prediction and summarized several
prognostics datasets commonly used for the research. An et al. [22 presented practical options for prognostics to
select an appropriate method for different applications. All the reviews have provided successful case studies and
useful descriptions of prognostics algorithms. However, most of the reviews have focused on the component-level
prognostics, such as the bearings 2311241 gears [25128] and batteries [271281[29],

As the industrial systems in the field become more complex, comprising of multiple components, system-level
prognostics is gaining much more interest from industry and academia. A complex system is composed of many
interlinked components, which makes the system-level prognostics difficult 239, |t should be noted that the
degradation and health condition of the system is determined by its components, which means that the individual
degradation of components should be explored first and integrated to assess the system performance 91, From
the research viewpoint, the system-level prognostics has different characteristics from those of the component-
level as summarized in Figure 2. At the component level, a single or a set of sensors, such as vibration, acoustic
emission, and temperature sensors, can be used to monitor damage degradation. Since components are relatively
easy to test, a large number of failure data can be obtained from a testbed for the algorithm development. In
addition, a dedicated algorithm can be developed for feature extraction of the target component. On the contrary,
system-level prognostics contains multiple sensors from various components. Dedicated algorithms may not work

in one way or the other in the system. Models are rarely available due to the system complexity, which means that
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the data-driven method may be the only option. Few or no failure data exist in the real operation or by the testbed.

All these are the issues around the system-level prognostics.

BoUo

Component (bearings, gears,...) System (aircraft engine, etc)

Single sensor ta measure fault Multiple sensors to operate

Large failure data from testbed Few failure data from field

Dedicated techniques for features extraction General technique for features extraction
Model based method possible Data driven method is preferd

Edge computing Big data on the cloud

Figure 2. Prognostics approach for component and system level.

| 2. Approach for System-Level Prognostics

Based on the issues and challenges mentioned in the introduction, this section reviews the approaches that have
been addressed to solve the system-level prognostics. It can be grouped into four categories: (1) system health
index-based, (2) integration of components’ RUL, (3) prognostics under influenced components, and (4) multiple
failure modes. To help readers understand, authors have added simple illustrative examples in each category. It
should be noticed that each approach is not about a specific prognostics algorithm but the way to integrate the
information from multiple components for system-level information. In this paper, this process is called

‘systematization’. Therefore, any prognostics algorithms can be used before performing the systematization.

2.1. Approach 1: System Health Index-Based Approach

In the system health index-based approach, the health index is introduced to represent the degradation state of the
system. Ideally speaking, the system health index should be derived from the degradation of each component. This
is however hard to achieve because the relationship between the components and system is usually unknown.
Under this circumstance, the system health index-based method can be further divided into three groups: (1)
physical system performance (PSP)—physical outputs such as the flow rate of a piping system or the generated
power of wind turbine as an example, (2) virtual system performance (VSP)—index representing the system health
such as the probability of system failure or distance from the normal; and (3) direct RUL of the system. Among the
three groups, the PSP, which employs a physical model, has a strength in both physical interpretation and
prediction accuracy. However, such a model is rarely available for complex systems. Thus, the VSP and direct RUL
are taken as more practical options, which is also challenging since a large number of run-to-failure data are

required.
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Figure 3 shows the example of a DC motor to aid in explaining the system health index-based method. It should
not be confused that the motor here is regarded as a system consisting of two components: permanent magnet
and bearing, whose degradation affects the system performance: the reduction in the output torque of the motor.
Typically, the velocity and current are obtained as the CM data. In the PSP method, system health (e.g., the output
torque of DC motor, T ) is estimated via a physical system model, in which the degradation of the components
and the resulting system health are evaluated based on the CM data. In the VSP method, virtual system health is
commonly introduced between 1 (normal) and O (failure) or vice versa, and an empirical model is developed to
relate the CM data with the system health using the run-to-failure data set. For this, a machine learning algorithm

whose inputs are features extracted from signals and output is health index between 0 and 1 is usually employed.
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Figure 3. System health index-based approach.

While the overall summaries for each approach in the literature are given in Table 1, a few papers are explained in
more detail. In the PSP approach, Rodrigues (22 estimated system RUL using the system-level performance
indicator obtained by the system model. He converted the health factors of individual components into the
performance indices and combined them into the system-level performance. Khorasgani et al. 21 developed a two-
step process for the system prognosis. In the estimation step, the system state and degradation parameters are
estimated based on the system model using the PF. Then in the prediction step, the first-order reliability method

(FORM) is applied to predict the system RUL. In their work, the system EOL was defined based on the system
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performance, which was calculated from the individual components and system degradation model. Wang et al. 33
introduced a Bayesian network-based lifetime prediction method for systems, which combines multiple sensor
information and considers the interdependency between accidental failure and degradation failure mechanism. Liu
et al. 24 developed a dynamic reliability assessment approach for the multi-state system by utilizing the system-
level observation history. The proposed recursive method dynamically updates the reliability function of the system

by incorporating system-level inspection data.

Table 1. Summary of system health index-based approach.

Approach System in the Study Data Sources Prognostics Algorithm

Water piping system Direct CM Dynamic rehat[g]ty assessment

Gamma process 32

Physical System Pump system Direct CM Similarity-based method 23]
Performance
Rectifier system Direct CM First-ord(elzr(;iial;i:igil)]/ method
Air conditioning system Direct CM Gamma process 22
Punching system Direct CM Bayesian network 28]

Direct/Indirect

Unmanned aerial vehicle CM data & Bayesian network [33]
system environmental
data
Compressor system Indirect CM data Similarity-based method [EZ
] Train door system Indirect CM data SehEEnE ad\[%rsarlal LEREA
Virtual System
Performance
i Autoregressive-moving average
Elevator door motion Indirect CM data g 0 g o]
system model
Similarity-based method [29[41][42]
Particle filter [431144]
Aircraft endine General path model 23]
(CMAPSgS) Indirect CM data Ensemble of data-driven
algorithm 481471
Generative adversarial network
[@]
Direct Remaining Useful Aircraft engine Indirect CM data Multi-layer perceptron (MLP) (49]
Life (CMAPSS) (501

Recurrent neural network (RNN)
(51][52]

Long short-term memory (LSTM)
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Approach System in the Study  Data Sources Prognostics Algorithm
[E3[[54TE5]

Convolutional neural network
(CNN) 2817

In the VSP approach, a virtual system health index is mainly introduced that varies between 1 in the early period
and 0 near the failure. Then, logistics regression 29 or linear regression [42] 3re used as an empirical system model
to convert the CM data into 1D system performance. The elevator door 29 or aircraft engine [42] 3re chosen for the
demonstration. Other researchers have employed the concept of distance from the normal as the health indicator,
which is determined by multivariable state estimation technique (MSET) B8 juto-associative kernel regression
(AAKR), or auto-associative neural networks (AANN) B3] The direct RUL method is similar to the VSP but the
RUL is employed directly instead of the VSP. That is, the CM data are directly related with the RUL of target assets
using artificial intelligence (Al) algorithms, such as multi-layer perceptron (MLP) “29  convolutional neural
network (CNN) 8IS recurrent neural network (RNN) [51I52] - and long short-term memory (LSTM) [53][541155] "
which the system-model is considered as a black-box. There have also been studies in which the health index is
first developed for the system, and the RUL prediction by the index is followed using such as the particle filter [43]
the similarity-based method “AELE2 and the ensemble approach “8. 1t should be remarked that although these
papers address the system in their study, it is not strictly the system prognosis since they treat the system as a

single unit without considering the components.

2.2. Approach 2: Integration of Components’ RUL into the System

The second approach is to integrate RUL information of individual components to obtain the system-level RUL,
rather than directly determining the system health index or RUL as in approach 1. Figure 4 briefly illustrates the
component RUL-based approach. In the figure, two examples of the serial and parallel system are given, which
define the system failure based on the ‘AND’ and ‘OR’ gates of the fault tree diagram. For the gearbox system in
Figure 4a, failure of any components results in system failure. In this case, the union of three RULs yields the
system RUL. For the aircraft hydraulic system with redundancy, the failure of all three sub-systems leads to system

failure as shown in Figure 4b, which means that the intersection of three RULs gives the system RUL.
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Figure 4. Component RUL-based approach: (a) System RUL of serial systems (gearbox system); (b) System RUL
of parallel systems (aircraft hydraulic system).

The diagram can be generalized to the complex system by applying the fault tree analysis (FTA), in which the
component-level RULs are propagated to the system RUL by the fault tree structure (see, e.g., Gomes et al. [69),
Ferri et al. 81 proposed a methodology for maintenance planning in the view of system-level prognostics using the
FTA. In the end, the system-level RUL was used to identify optimum component combinations to be repaired in
order to maximize system safety. In this category, some literature has employed a physical system model to
determine the RUL of individual components. This approach, however, results in a higher computational burden as
the number of components increases. To overcome this issue, model decomposition methods have been proposed
by Daigle et al. [6263164] jn which a distributed approach is developed for the system-level prognostics by
decomposing both the estimation and prediction problems into computationally independent sub-scale problems.
Then the system RUL is determined as a minimum of the independent subsystem’s RUL. They have also
developed PF-based prognostics characterizing multiple damage progression paths based on the joint state-
parameter estimation 82, Vasan et al. 88 proposed approaches based on decomposing the system into multiple
critical circuits and exploiting the parameters specific to the system’s circuits. Chiachio et al. &2 introduced a

mathematical framework for modeling prognostics at a system level based on the plausible Petri net by
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incorporating maintenance actions, various prognostics information, expert knowledge and resource availability.

Table 2 summarizes the component RUL-based methods for system-level prognostics.

Table 2. Summary of component RUL-based approach.

System in the
Study

Algorithm

Characteristics

Aircraft ECS

Aircraft hydraulic
system

Electrical power
system

Four-wheeled
rover

Pump

National
Aerospace
System

Centrifugal pump

RF receiver
system

Numerical
example

Fault tree analysis &
Kalman filter (69

Fault tree analysis &
Kalman filter (€8]

Fault tree analysis (61l
[69]

Kalman filter Z9

Model decomposition
[62]

Model decomposition
[63]

Model decomposition
(64]

Particle filter 62!

Model decomposition
[66]

Petri net (7

Fault tree-based RUL fusion
Independent failure event

Individual component’s RULs are estimated using Kalman filter
and system-level RUL is determined based on Fault tree
analysis

Fault tree-based RUL fusion
Optimum component combination to repair

Individual component’s RUL is estimated using Kalman filter
and defined as system-level RUL

Decomposition of a large prognostics problem into several
Independent local subproblems

Novel distributed model-based prognostics scheme
The system RUL is the minimum of all the distributed
subsystem RULs

Combining individually independent components RULs of
aircraft environmental control system

Individual component’'s RULs are represented as particles and
system-level RUL are approximated by them.

Decomposing a system-level problem into multiple critical
components

Incorporation of maintenance actions, various prognostics
information, expert knowledge and resource availability

2.3. Approach 3: Prognostics under Influenced Components

As mentioned before, system-level prognostics is difficult due to the inter-dependencies between the “affecting”
and “influenced” components in the system 9B Syuch dependencies may lead to the different degradation of the
system than the case otherwise. Figure 5 shows the gearbox system, which consists of gear and bearing, where
the degradation or fault of bearing affects the degradation of gear. In the figure, if the bearing stays in the normal
condition, the health trend of gear shows the normal degradation pattern. When a fault occurs in the bearing,

however, the degradation pattern of gear is changed, i.e., is accelerated, and reaches the threshold earlier. This
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issue has already been studied extensively in the field of maintenance strategies and policies with the topic of the
multiple components 211, However, they did not consider the interdependency of the components in the prognostics
or RUL prediction.

Interdependency between components

| Gearbox system | Interdependency
Affecting

Coowos> 1y Comr D

T;: thme when bearing fails
Htert of brarng adure

Bornad

Gear degradation

Bearing condition

P ——————
T Tirma

Figure 5. Influenced component-based approach.

While the list of papers for this approach is given in Table 3, some of them are explained in detail as follows.
Tamssaouet et al. L2AIBITAISIZEIIT hroposed a methodology based on the inoperability input-output model to
evaluate the system-level RUL in the situation where multiple interactions between components and the influence
of the environment exist. Liu et al. /8 introduced dynamic reliability assessment and RUL prediction of a system
that consists of a pump and valve. Parallel Monte Carlo simulation and recursive Bayesian method are integrated
for the purpose of failure prognostics under dependency among components. Hu et al. 29 proposed a failure
prognosis method using the dynamic Bayesian network (DBN) for a complex system, which considers the
interaction between components and influence of protection action in the system during dynamic failure scenarios.
Maitre et al. [8Y emphasized that when one component has a failure, the remaining components compensate for
the loss of the component and thus function in a ‘boosted’ mode. As a result, the component under ‘boosted’ mode
shows a more severe degradation than without it. Hafsa et al. [81l emphasized the importance of interactions
between components in RUL prediction. They proposed a method combining the probabilistic Weibull and
stochastic dependency model, which characterizes the effects of degradation interaction derived from other
components. Hanwen et al. B2 demonstrated that there exists a noise that impacts the system with multiple
components, as all the components operate in the same circumstance and affect each other. They named this
public noise. To describe the degradation with public noise, Brownian motion that affects the degradation of
components was added to the Wiener process. Then, the degradations of the components are jointly estimated by
the KF, and the system RUL is determined by the minimum RUL of components. Bian and Gebraeel 834l
proposed a stochastic modeling methodology considering interactions among the degradation of components in a

system. They focused on characterizing the relationship between the influencing and the affected component.

Table 3. Summary of prognostics of influenced components approach.
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System in the Study

Algorithm

Characteristics

Tennessee Eastman
Process

Pump & Valve

Flue gas energy recovery
system

Lorry system

Blast furnace wall

Hydraulic hybrid system

Gearbox

Aircraft bleed system

Cold box unit in
petrochemical plant

Numerical simulation

Inoperability input-output model L2Z2ZAI7SI76][77]

Parallel Monte Carlo simulation &dynamic reliability
assessment [Z81(83](86]

Bayesian network £

Webuill model & Stochastic dependency model [81]

Multi-degradation modeling with public noise (82]

Bond graph &4

Marshall-Olkin bivariate exponential distribution (8]

System redundancy & Adaptation of operational
modes in degraded functioning 89

Regression &2

Structural impact measure 29
Stochastic modeling of interaction 8384l

Interaction between
components
Influence of the
environment

Interaction between
components

Interaction between
components
Influence of the
protection

Interaction between
components

Interaction between
components

Interaction between
components
Dependency on
operating mode

Interaction between
failure mode

Interaction between
components

Interaction between
components

Interaction between
components

2.4. Approach 4: Prognostics of Multiple Failure Modes

In the PHM, identification of fault modes is the initial step toward successful prognostics 2. In many cases, the
system contains multiple failure modes even for a single component. In that case, the degradation of components
or systems can show a different pattern from those of single mode, which should involve identifying active failure
modes and tracking their progression. The case is illustrated by an example in Figure 6, where the bearing faults
can occur at different places with different progression paths such as the outer race, inner race, and rolling

element. The faults if occurred concurrently can interact and accelerate the global degradation of the components
fss],

https://encyclopedia.pub/entry/16695 10/20



System-Level Prognostics | Encyclopedia.pub

Rolling element

Bearing

Figure 6. lllustration of failure mode-based approach.

For accurate fault prognosis, the method should be able to address this aspect. Several approaches have been
studied to this end, most of which were however rooted in the traditional reliability engineering such as a hazard
model or survival analysis [BHE2E3I94] Ragab et al. 2L merged the logical analysis of data with a set of non-
parametric cause-specific survival functions and applied it to the bearing prognostics whose failure modes were
inner race, outer race, and rolling element faults. Zhang et al. [23! presented a mixture Weibull proportional hazard
model for the EOL estimation of mechanical system that includes multiple failure modes and applied to a pump
system that contains two failure modes: sealing ring wear and thrust bearing damage. Historical lifetime and
condition monitoring data were combined into the traditional proportional hazard model. Blancke et al. [23
introduced a multi-failure mode prognosis approach for complex equipment. They used graph theory and
stochastic models for diagnostics and prognostics, respectively. Once the failure mechanism is detected by the
diagnostic process, the prognostic algorithm based on a stochastic model is used to predict the possible failure
mode dynamically as new data are acquired. The proposed algorithm was applied to a hydroelectric generator
stator, which contains more than 150 failure mechanisms associated with three failure modes. While the above
studies are based on the traditional reliability approach, there have been other studies for the multiple failure
modes prognosis by using the PF [E2I[96IR7I198] Dajgle and Goebel 8 used the PF for model-based prognostics of
a valve system that contains multiple failure modes. Zhang et al. 28] introduced PF-based multi-fault prognostics of
bearing degradation whose failure modes were grease damage, spall, and unknown fault. They monitored features
directly related to each failure mode and utilized them in the PF framework. Table 4 summarizes the system-level

prognostics considering multiple failure modes.

Table 4. Summary of failure mode-based approach.

Types of Failure

System in the Study Algorithm Mode

Rolling element bearing Survival analysis 211 Inner race fault
Outer race fault
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Types of Failure
Mode

Rolling element fault

System in the Study Algorithm

Grease breakdown
Particle filter (28] Spall
Unknown fault

Pump system Proportional hazard model (93] Sealing ring wear
Trust bearing damage
Accelerator pedal
Electronic Throttle Control Proportional hazard model 221124 Throttle Body
Other three failure

Spring rate
Internal leak
Valve system Particle filter (28] Top (bottom) external
leak
Friction

Recurrent neural network (RNN) £

[100]

. . Flow pressure dro
lon mill etching system (PHM Data Long short-term memory (LSTM) : foLy
[101] Flow pressure high

challenge 2018) e
Convolutional neural network (CNN)
(102]
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