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Condition-based maintenance (CBM) is a maintenance policy that maintains the reliability of system operation and

reduces the downtime of the system. Prognostics and health management (PHM) has attracted much attention as

the enabler of CBM. The PHM aims to predict the remaining useful life (RUL) of the system and suggest an optimal

health management strategy.

system-level prognostics  performance  remaining useful life  dependency

1. Introduction

Condition-based maintenance (CBM) is a maintenance policy that maintains the reliability of system operation and

reduces the downtime of the system. Prognostics and health management (PHM) has attracted much attention as

the enabler of CBM. The PHM aims to predict the remaining useful life (RUL) of the system and suggest an optimal

health management strategy. The PHM consists of four main stages: sensing, diagnostics, prognostics, and health

management, which are illustrated in Figure 1. In the sensing stage, PHM engineers determine what to measure

and which kind of sensors to install. Health diagnostics is the process of evaluating the degree of damage

significance and identifying the root causes of failure. In other words, it focuses on the current operability of the

system at stake. On the other hand, health prognostics aims to provide information about the future operability of

the system. Prognostics includes establishing a failure precursor which indicates an incipient degradation of the

system and estimates the RUL based on the current health state and expected future operating conditions .

Finally, the health management of the system is performed based on the information obtained from diagnostics and

prognostics. Each step has its own challenges. For example, effective sensor network design for sensing ,

feature extraction, observability analysis, and diagnostics algorithm for fault diagnostics , development of

prognostics algorithm , and proper system operation strategy for health management . In view of the CBM,

however, the prognostics is the most important since it enables the proactive maintenance plan . This article

focuses on the prognostics of complex systems that are encountered in the real industry.
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Figure 1. Levels of prognostics and health management.

To date, there are many valuable review papers and books in the PHM with diverse aspects such as the general

process of PHM , pre-processing , and prognostics algorithms . For

example, Lee et al.  provided a comprehensive review of the PHM followed by an introduction of a systematic

PHM design methodology for converting data into prognostic information. Lei et al.  provided a systematic

review of machinery prognostics from the data acquisition to the RUL prediction and summarized several

prognostics datasets commonly used for the research. An et al.  presented practical options for prognostics to

select an appropriate method for different applications. All the reviews have provided successful case studies and

useful descriptions of prognostics algorithms. However, most of the reviews have focused on the component-level

prognostics, such as the bearings , gears , and batteries .

As the industrial systems in the field become more complex, comprising of multiple components, system-level

prognostics is gaining much more interest from industry and academia. A complex system is composed of many

interlinked components, which makes the system-level prognostics difficult . It should be noted that the

degradation and health condition of the system is determined by its components, which means that the individual

degradation of components should be explored first and integrated to assess the system performance . From

the research viewpoint, the system-level prognostics has different characteristics from those of the component-

level as summarized in Figure 2. At the component level, a single or a set of sensors, such as vibration, acoustic

emission, and temperature sensors, can be used to monitor damage degradation. Since components are relatively

easy to test, a large number of failure data can be obtained from a testbed for the algorithm development. In

addition, a dedicated algorithm can be developed for feature extraction of the target component. On the contrary,

system-level prognostics contains multiple sensors from various components. Dedicated algorithms may not work

in one way or the other in the system. Models are rarely available due to the system complexity, which means that
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the data-driven method may be the only option. Few or no failure data exist in the real operation or by the testbed.

All these are the issues around the system-level prognostics.

Figure 2. Prognostics approach for component and system level.

2. Approach for System-Level Prognostics

Based on the issues and challenges mentioned in the introduction, this section reviews the approaches that have

been addressed to solve the system-level prognostics. It can be grouped into four categories: (1) system health

index-based, (2) integration of components’ RUL, (3) prognostics under influenced components, and (4) multiple

failure modes. To help readers understand, authors have added simple illustrative examples in each category. It

should be noticed that each approach is not about a specific prognostics algorithm but the way to integrate the

information from multiple components for system-level information. In this paper, this process is called

‘systematization’. Therefore, any prognostics algorithms can be used before performing the systematization.

2.1. Approach 1: System Health Index-Based Approach

In the system health index-based approach, the health index is introduced to represent the degradation state of the

system. Ideally speaking, the system health index should be derived from the degradation of each component. This

is however hard to achieve because the relationship between the components and system is usually unknown.

Under this circumstance, the system health index-based method can be further divided into three groups: (1)

physical system performance (PSP)—physical outputs such as the flow rate of a piping system or the generated

power of wind turbine as an example, (2) virtual system performance (VSP)—index representing the system health

such as the probability of system failure or distance from the normal; and (3) direct RUL of the system. Among the

three groups, the PSP, which employs a physical model, has a strength in both physical interpretation and

prediction accuracy. However, such a model is rarely available for complex systems. Thus, the VSP and direct RUL

are taken as more practical options, which is also challenging since a large number of run-to-failure data are

required.
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Figure 3 shows the example of a DC motor to aid in explaining the system health index-based method. It should

not be confused that the motor here is regarded as a system consisting of two components: permanent magnet

and bearing, whose degradation affects the system performance: the reduction in the output torque of the motor.

Typically, the velocity and current are obtained as the CM data. In the PSP method, system health (e.g., the output

torque of DC motor,  ) is estimated via a physical system model, in which the degradation of the components

and the resulting system health are evaluated based on the CM data. In the VSP method, virtual system health is

commonly introduced between 1 (normal) and 0 (failure) or vice versa, and an empirical model is developed to

relate the CM data with the system health using the run-to-failure data set. For this, a machine learning algorithm

whose inputs are features extracted from signals and output is health index between 0 and 1 is usually employed.

Figure 3. System health index-based approach.

While the overall summaries for each approach in the literature are given in Table 1, a few papers are explained in

more detail. In the PSP approach, Rodrigues  estimated system RUL using the system-level performance

indicator obtained by the system model. He converted the health factors of individual components into the

performance indices and combined them into the system-level performance. Khorasgani et al.  developed a two-

step process for the system prognosis. In the estimation step, the system state and degradation parameters are

estimated based on the system model using the PF. Then in the prediction step, the first-order reliability method

(FORM) is applied to predict the system RUL. In their work, the system EOL was defined based on the system
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performance, which was calculated from the individual components and system degradation model. Wang et al. 

introduced a Bayesian network-based lifetime prediction method for systems, which combines multiple sensor

information and considers the interdependency between accidental failure and degradation failure mechanism. Liu

et al.  developed a dynamic reliability assessment approach for the multi-state system by utilizing the system-

level observation history. The proposed recursive method dynamically updates the reliability function of the system

by incorporating system-level inspection data.

Table 1. Summary of system health index-based approach.

Approach System in the Study Data Sources Prognostics Algorithm

Physical System
Performance

Water piping system Direct CM
Dynamic reliability assessment

Pump system Direct CM
Gamma process 

Similarity-based method 

Rectifier system Direct CM
First-order reliability method

(FORM) 

Air conditioning system Direct CM Gamma process 

Virtual System
Performance

Punching system Direct CM Bayesian network 

Unmanned aerial vehicle
system

Direct/Indirect
CM data &

environmental
data

Bayesian network 

Compressor system Indirect CM data Similarity-based method 

Train door system Indirect CM data
Generative adversarial network

Elevator door motion
system

Indirect CM data
Autoregressive-moving average

model 

Aircraft engine
(CMAPSS)

Indirect CM data

Similarity-based method 
Particle filter 

General path model 
Ensemble of data-driven

algorithm 
Generative adversarial network

Direct Remaining Useful
Life

Aircraft engine
(CMAPSS)

Indirect CM data Multi-layer perceptron (MLP) 

Recurrent neural network (RNN)

Long short-term memory (LSTM)
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Approach System in the Study Data Sources Prognostics Algorithm

Convolutional neural network
(CNN) 

In the VSP approach, a virtual system health index is mainly introduced that varies between 1 in the early period

and 0 near the failure. Then, logistics regression  or linear regression  are used as an empirical system model

to convert the CM data into 1D system performance. The elevator door  or aircraft engine  are chosen for the

demonstration. Other researchers have employed the concept of distance from the normal as the health indicator,

which is determined by multivariable state estimation technique (MSET) , auto-associative kernel regression

(AAKR), or auto-associative neural networks (AANN) . The direct RUL method is similar to the VSP but the

RUL is employed directly instead of the VSP. That is, the CM data are directly related with the RUL of target assets

using artificial intelligence (AI) algorithms, such as multi-layer perceptron (MLP) , convolutional neural

network (CNN) , recurrent neural network (RNN) , and long short-term memory (LSTM) , in

which the system-model is considered as a black-box. There have also been studies in which the health index is

first developed for the system, and the RUL prediction by the index is followed using such as the particle filter ,

the similarity-based method , and the ensemble approach . It should be remarked that although these

papers address the system in their study, it is not strictly the system prognosis since they treat the system as a

single unit without considering the components.

2.2. Approach 2: Integration of Components’ RUL into the System

The second approach is to integrate RUL information of individual components to obtain the system-level RUL,

rather than directly determining the system health index or RUL as in approach 1. Figure 4 briefly illustrates the

component RUL-based approach. In the figure, two examples of the serial and parallel system are given, which

define the system failure based on the ‘AND’ and ‘OR’ gates of the fault tree diagram. For the gearbox system in

Figure 4a, failure of any components results in system failure. In this case, the union of three RULs yields the

system RUL. For the aircraft hydraulic system with redundancy, the failure of all three sub-systems leads to system

failure as shown in Figure 4b, which means that the intersection of three RULs gives the system RUL.
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Figure 4. Component RUL-based approach: (a) System RUL of serial systems (gearbox system); (b) System RUL

of parallel systems (aircraft hydraulic system).

The diagram can be generalized to the complex system by applying the fault tree analysis (FTA), in which the

component-level RULs are propagated to the system RUL by the fault tree structure (see, e.g., Gomes et al. ).

Ferri et al.  proposed a methodology for maintenance planning in the view of system-level prognostics using the

FTA. In the end, the system-level RUL was used to identify optimum component combinations to be repaired in

order to maximize system safety. In this category, some literature has employed a physical system model to

determine the RUL of individual components. This approach, however, results in a higher computational burden as

the number of components increases. To overcome this issue, model decomposition methods have been proposed

by Daigle et al. , in which a distributed approach is developed for the system-level prognostics by

decomposing both the estimation and prediction problems into computationally independent sub-scale problems.

Then the system RUL is determined as a minimum of the independent subsystem’s RUL. They have also

developed PF-based prognostics characterizing multiple damage progression paths based on the joint state-

parameter estimation . Vasan et al.  proposed approaches based on decomposing the system into multiple

critical circuits and exploiting the parameters specific to the system’s circuits. Chiachio et al.  introduced a

mathematical framework for modeling prognostics at a system level based on the plausible Petri net by
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incorporating maintenance actions, various prognostics information, expert knowledge and resource availability.

Table 2 summarizes the component RUL-based methods for system-level prognostics.

Table 2. Summary of component RUL-based approach.

System in the
Study Algorithm Characteristics

Aircraft ECS
Fault tree analysis &

Kalman filter 
Fault tree-based RUL fusion

Independent failure event

Aircraft hydraulic
system

Fault tree analysis &
Kalman filter 

Individual component’s RULs are estimated using Kalman filter
and system-level RUL is determined based on Fault tree

analysis

Electrical power
system

Fault tree analysis Fault tree-based RUL fusion
Optimum component combination to repair

  Kalman filter 
Individual component’s RUL is estimated using Kalman filter

and defined as system-level RUL

Four-wheeled
rover

Model decomposition Decomposition of a large prognostics problem into several
Independent local subproblems

Pump
Model decomposition

Novel distributed model-based prognostics scheme
The system RUL is the minimum of all the distributed

subsystem RULs

National
Aerospace

System

Model decomposition Combining individually independent components RULs of
aircraft environmental control system

Centrifugal pump Particle filter 
Individual component’s RULs are represented as particles and

system-level RUL are approximated by them.

RF receiver
system

Model decomposition Decomposing a system-level problem into multiple critical
components

Numerical
example

Petri net 
Incorporation of maintenance actions, various prognostics

information, expert knowledge and resource availability

2.3. Approach 3: Prognostics under Influenced Components

As mentioned before, system-level prognostics is difficult due to the inter-dependencies between the “affecting”

and “influenced” components in the system . Such dependencies may lead to the different degradation of the

system than the case otherwise. Figure 5 shows the gearbox system, which consists of gear and bearing, where

the degradation or fault of bearing affects the degradation of gear. In the figure, if the bearing stays in the normal

condition, the health trend of gear shows the normal degradation pattern. When a fault occurs in the bearing,

however, the degradation pattern of gear is changed, i.e., is accelerated, and reaches the threshold earlier. This
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issue has already been studied extensively in the field of maintenance strategies and policies with the topic of the

multiple components . However, they did not consider the interdependency of the components in the prognostics

or RUL prediction.

Figure 5. Influenced component-based approach.

While the list of papers for this approach is given in Table 3, some of them are explained in detail as follows.

Tamssaouet et al.  proposed a methodology based on the inoperability input-output model to

evaluate the system-level RUL in the situation where multiple interactions between components and the influence

of the environment exist. Liu et al.  introduced dynamic reliability assessment and RUL prediction of a system

that consists of a pump and valve. Parallel Monte Carlo simulation and recursive Bayesian method are integrated

for the purpose of failure prognostics under dependency among components. Hu et al.  proposed a failure

prognosis method using the dynamic Bayesian network (DBN) for a complex system, which considers the

interaction between components and influence of protection action in the system during dynamic failure scenarios.

Maitre et al.  emphasized that when one component has a failure, the remaining components compensate for

the loss of the component and thus function in a ‘boosted’ mode. As a result, the component under ‘boosted’ mode

shows a more severe degradation than without it. Hafsa et al.  emphasized the importance of interactions

between components in RUL prediction. They proposed a method combining the probabilistic Weibull and

stochastic dependency model, which characterizes the effects of degradation interaction derived from other

components. Hanwen et al.  demonstrated that there exists a noise that impacts the system with multiple

components, as all the components operate in the same circumstance and affect each other. They named this

public noise. To describe the degradation with public noise, Brownian motion that affects the degradation of

components was added to the Wiener process. Then, the degradations of the components are jointly estimated by

the KF, and the system RUL is determined by the minimum RUL of components. Bian and Gebraeel 

proposed a stochastic modeling methodology considering interactions among the degradation of components in a

system. They focused on characterizing the relationship between the influencing and the affected component.

Table 3. Summary of prognostics of influenced components approach.
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System in the Study Algorithm Characteristics

Tennessee Eastman
Process

Inoperability input-output model 

Interaction between
components

Influence of the
environment

Pump & Valve
Parallel Monte Carlo simulation &dynamic reliability

assessment 
Interaction between

components

Flue gas energy recovery
system

Bayesian network 

Interaction between
components

Influence of the
protection

Lorry system Webuill model & Stochastic dependency model 
Interaction between

components

Blast furnace wall Multi-degradation modeling with public noise 
Interaction between

components

Hydraulic hybrid system Bond graph 

Interaction between
components

Dependency on
operating mode

Gearbox Marshall-Olkin bivariate exponential distribution 
Interaction between

failure mode

Aircraft bleed system
System redundancy & Adaptation of operational

modes in degraded functioning 
Interaction between

components

Cold box unit in
petrochemical plant

Regression 
Interaction between

components

Numerical simulation
Structural impact measure 

Stochastic modeling of interaction 
Interaction between

components

2.4. Approach 4: Prognostics of Multiple Failure Modes

In the PHM, identification of fault modes is the initial step toward successful prognostics . In many cases, the

system contains multiple failure modes even for a single component. In that case, the degradation of components

or systems can show a different pattern from those of single mode, which should involve identifying active failure

modes and tracking their progression. The case is illustrated by an example in Figure 6, where the bearing faults

can occur at different places with different progression paths such as the outer race, inner race, and rolling

element. The faults if occurred concurrently can interact and accelerate the global degradation of the components

.
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Figure 6. Illustration of failure mode-based approach.

For accurate fault prognosis, the method should be able to address this aspect. Several approaches have been

studied to this end, most of which were however rooted in the traditional reliability engineering such as a hazard

model or survival analysis . Ragab et al.  merged the logical analysis of data with a set of non-

parametric cause-specific survival functions and applied it to the bearing prognostics whose failure modes were

inner race, outer race, and rolling element faults. Zhang et al.  presented a mixture Weibull proportional hazard

model for the EOL estimation of mechanical system that includes multiple failure modes and applied to a pump

system that contains two failure modes: sealing ring wear and thrust bearing damage. Historical lifetime and

condition monitoring data were combined into the traditional proportional hazard model. Blancke et al. 

introduced a multi-failure mode prognosis approach for complex equipment. They used graph theory and

stochastic models for diagnostics and prognostics, respectively. Once the failure mechanism is detected by the

diagnostic process, the prognostic algorithm based on a stochastic model is used to predict the possible failure

mode dynamically as new data are acquired. The proposed algorithm was applied to a hydroelectric generator

stator, which contains more than 150 failure mechanisms associated with three failure modes. While the above

studies are based on the traditional reliability approach, there have been other studies for the multiple failure

modes prognosis by using the PF . Daigle and Goebel  used the PF for model-based prognostics of

a valve system that contains multiple failure modes. Zhang et al.  introduced PF-based multi-fault prognostics of

bearing degradation whose failure modes were grease damage, spall, and unknown fault. They monitored features

directly related to each failure mode and utilized them in the PF framework. Table 4 summarizes the system-level

prognostics considering multiple failure modes.

Table 4. Summary of failure mode-based approach.

System in the Study Algorithm Types of Failure
Mode

Rolling element bearing Survival analysis Inner race fault
Outer race fault
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System in the Study Algorithm Types of Failure
Mode

Rolling element fault

Particle filter 
Grease breakdown

Spall
Unknown fault

Pump system Proportional hazard model Sealing ring wear
Trust bearing damage

Electronic Throttle Control Proportional hazard model 
Accelerator pedal

Throttle Body
Other three failure

Valve system Particle filter 

Spring rate
Internal leak

Top (bottom) external
leak

Friction

Ion mill etching system (PHM Data
challenge 2018)

Recurrent neural network (RNN) 

Long short-term memory (LSTM)

Convolutional neural network (CNN)

Flow pressure drop
Flow pressure high

Flow leakage
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