

Blue Infrastructure Affect Residential Areas' Attractiveness Rating

Subjects: **Urban Studies**

Contributor: Małgorzata Dudzińska , Agnieszka Dawidowicz , Marta Gross

Blue Infrastructure (BI) is a system of water-based ecological and engineering interactions that provides multiple social and ecosystem benefits in an urbanized environment.

housing estates

residential neighborhood

water bodies

water reservoirs

1. Introduction

Blue Infrastructure (BI) is a complex concept. It refers to a system of water-based ecological and engineering interactions that provides various social and ecosystem benefits in an urban environment. The development of BI in cities is currently a significant research topic for scholars and urban planners, focused on sustainable urban development. Given that water is a scarce and essential resource for life, such research aligns with multiple Sustainable Development Goals (SDGs) ^[1]. A predominant focus is on devising concepts for sustainable water management under SDG 6 (Ensure availability and sustainable management of water and sanitation for all) ^[2]. Issues concerning Sustainable Drainage Systems, which involve infiltration, drainage, and water storage to provide benefits like improved water quality, wildlife habitats, and societal amenities, are actively explored ^{[3][4]}.

From a climate change perspective (SDG 13—Take urgent action to combat climate change and its impacts), particularly recent global warming trends, studies have emerged to determine the impact of BI on reducing the urban heat island effect, common in urban areas ^[5]. It has been proven that green spaces, surface waters, and other elements of BI can help lower temperatures and create a more pleasant thermal environment in cities ^{[6][7]}. Other studies in this field focus on assessing the influence of BI on the air quality in urban areas. Green areas and water features reduce air pollution by capturing dust, and absorbing carbon dioxide and other harmful substances ^{[8][9]}.

However, the topic of BI encompasses more than research related to systems, ecosystem services, and sustainable water management solutions aimed at managing stormwater, minimizing flooding ^{[10][11][12]}, and improving surface water quality. It also includes studies on the evaluation of urban landscapes and their esthetic and functional value arising from the presence or absence of BI, as well as public awareness regarding water use and participation in development projects. Consequently, under SDG 3 (Ensure healthy lives and promote well-being for all at all ages), research examines the impact of green areas, parks, ponds, and other BI elements on the mental health and well-being of urban residents. Numerous studies have shown that access to nature, in the form of green spaces and water elements, contributes to stress reduction, improved well-being, and overall quality of life

[13][14]. This was particularly evident from research conducted during the COVID-19 lockdowns [15][16]. Furthermore, with regard to SDG 4 (Ensure inclusive and equitable quality education and promote lifelong learning opportunities for all), the level of residents' awareness and knowledge regarding BI and its benefits has been assessed. This includes analyzing the effectiveness of information and educational campaigns on blue solutions and their impact on acceptance and community engagement [17][18].

Under SDG 11 (Make cities and human settlements inclusive, safe, resilient, and sustainable), emphasis is placed on scientific research regarding residents' access to BI in cities. These studies aim to identify inequalities due to cultural preferences, mobility needs [19][20], or exclusions based on race [21] and develop strategies that ensure equitable access to blue solutions' benefits for all city residents [22]. Finally, concerning SDG 17 (Strengthen the means of implementation and revitalize the Global Partnership for Sustainable Development), research focuses on community participation in planning, designing, and implementing BI projects. Local community involvement, knowledge, and engagement are crucial for the success of BI projects [23]. However, despite a number of studies considering the accessibility of BI in cities and their importance for the well-being of residents, there are no studies in the available literature that examine what type of BI functionality is most desired by residents and thus influences the attractiveness of housing neighborhoods. Six primary functions of water bodies are distinguished: ecological, recreational [24], educational, social, economic, and esthetic [25]. The topology of this classification can be applied to both natural and anthropogenic water bodies.

2. Diagnosis of Urban Design and Water Management

Previous evaluations of entire cities or specific districts included an indicator of the average share of green spaces within estates [24] or accessibility/distance to recreational areas with constructed water bodies, regardless of their size or functionality [25]. Diagnostics and evaluations of water reservoirs in cities are carried out using various methodological approaches, including taking into account the elements of ecosystem services [26][27] or laboratory criteria for water purity [28][29]. There are also methods that determine various approaches, such as esthetics and landscape shaping, recreation and tourism, biodiversity, climate use, water retention, and flood management. However, some authors omit several functions of water bodies in their methodologies. Li et al. [30] conducted a study on the ecological health and inhabitants of river corridors in Zhengzhou, China, using 26 indicators (mainly ecological, economic, and geographical) assessed through a five-point Likert scale in expert surveys. The indicators included charge cards, width of the border, water transparency, and eutrophication status. However, they used an expert interview without taking into account the actual needs and preferences of the residents. Kimic and Ostryz [31] analyzed various green and BI solutions in terms of their value in shaping the public space of urban transport, identifying 19 different Blue-Green Infrastructure services based on territorial, functional, service, and social aspects. Langie et al. [32] identified data on the availability of water facilities in the public space of large cities, considering factors such as communication, composition, infrastructure, use, and esthetics. Bacchin et al. [33] focused on BI responsible for spatial and performance modeling of stormwater systems, integrating catastrophic and blue performance. Their research in the city of Porto Alegre utilized water, ArcGIS, and EPA SWMM platforms to analyze the spatial environment, identify flood-prone areas, and model the performance of

stormwater drainage infrastructure at various spatial scales—macro, meso, and micro. This method integrates the theory of landscape ecology with practical applications for stormwater management.

Over the past five years, ISO 37,120 norms [34] have also been employed for assessing the urban quality of life, where supporting indicators take into account the aspect of accessibility to BI and include: 13.1 square meters of public indoor recreation space per capita and 13.2 square meters of public outdoor recreation space per capita (supporting indicator). The primary indicators in this norm are: 21.1% of the city population with potable water supply service, 21.2% of the city population with sustainable access to an improved water source, 21.3% of the population with access to improved sanitation, and 21.4 total domestic water consumption per capita (liters/day). However, there is a lack of an approach to evaluating the attractiveness of residential neighborhoods that considers the accessibility indicator for BI, marked by various distinct functions that such water bodies can serve despite the increase in popularity of BI plans and investments in recent years [35]. There is growing evidence of potential environmental, social, and health benefits [36]. Blue and green infrastructure elements combine and have a multifunctional impact on urban space [37]. This definition covers a wide range of issues and solutions. Moreover, green infrastructure and BI cannot be assigned to one profession [38]. Views on the topic also change depending on the discipline [37]. Authors often point out that blue (water) and green (nature, squares, and parks) infrastructure serve to protect against floods, droughts, and other effects of climate change and undoubtedly contribute to maintaining environmental balance and security in the city [39]. Therefore, BI functionalities are manifold. It is important to determine which of them are the most important and have the strongest impact on the assessment of the attractiveness of the public open space residential areas, taking into account the needs and preferences of the residents, which is part of a resident-friendly approach to spatial management. In this light, the following research hypothesis was verified: the recreational and esthetic function of a water body and the accompanying amenities are the most attractive features, which hold significant importance in evaluating residential neighborhoods.

References

1. United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development. 2015. Available online: <https://sdgs.un.org/2030agenda> (accessed on 17 November 2023).
2. Gleason, J.A.; Casiano Flores, C. Challenges of Water Sensitive Cities in Mexico: The Case of the Metropolitan Area of Guadalajara. *Water* 2021, 13, 601.
3. Gimenez-Maranges, M.; Breuste, J.; Hof, A. Sustainable Drainage Systems for Transitioning to Sustainable Urban Flood Management in the European Union: A Review. *J. Clean. Prod.* 2020, 255, 120191.
4. Cotterill, S.; Bracken, L.J. Assessing the Effectiveness of Sustainable Drainage Systems (SuDS): Interventions, Impacts and Challenges. *Water* 2020, 12, 3160.
5. Brears, R.C. Blue and Green Cities: The Role of Blue-Green Infrastructure in Managing Urban Water Resources; Palgrave Macmillan: London, UK, 2018; ISBN 978-1-37-59257-6.

6. Antoszewski, P.; Świerk, D.; Krzyżaniak, M. Statistical Review of Quality Parameters of Blue-Green Infrastructure Elements Important in Mitigating the Effect of the Urban Heat Island in the Temperate Climate (C) Zone. *Int. J. Environ. Res. Public Health* 2020, 17, 7093.
7. Lin, Y.; Wang, Z.; Jim, C.Y.; Li, J.; Deng, J.; Liu, J. Water as an Urban Heat Sink: Blue Infrastructure Alleviates Urban Heat Island Effect in Mega-City Agglomeration. *J. Clean. Prod.* 2020, 262, 121411.
8. Badach, J.; Szczepański, J.; Bonenberg, W.; Gębicki, J.; Nyka, L. Developing the Urban Blue-Green Infrastructure as a Tool for Urban Air Quality Management. *Sustainability* 2022, 14, 9688.
9. Kadaverugu, R.; Dhyani, S.; Dasgupta, R.; Kumar, P.; Matli, C. Urban Sustainability and Resilience Building: Blue-Green Infrastructure for Air Pollution Abatement and Realizing Multiple Co-Benefits. In Blue-Green Infrastructure Across Asian Countries; Springer: Singapore, 2022; pp. 397–417. ISBN 9789811671272.
10. Drosou, N.; Soetanto, R.; Hermawan, F.; Chmutina, K.; Bosher, L.; Hatmoko, J.U.D. Key Factors Influencing Wider Adoption of Blue–Green Infrastructure in Developing Cities. *Water* 2019, 11, 1234.
11. Koop, S.H.A.; Koetsier, L.; Doornhof, A.; Reinstra, O.; Van Leeuwen, C.J.; Brouwer, S.; Dieperink, C.; Driessen, P.P.J. Assessing the Governance Capacity of Cities to Address Challenges of Water, Waste, and Climate Change. *Water Resour. Manag.* 2017, 31, 3427–3443.
12. O'Donnell, E.; Thorne, C.; Ahilan, S.; Arthur, S.; Birkinshaw, S.; Butler, D.; Dawson, D.; Everett, G.; Fenner, R.; Glenis, V.; et al. The Blue-Green Path to Urban Flood Resilience. *Blue-Green Syst.* 2019, 2, 28–45.
13. Andreucci, M.B.; Russo, A.; Olszewska-Guizzo, A. Designing Urban Green Blue Infrastructure for Mental Health and Elderly Wellbeing. *Sustainability* 2019, 11, 6425.
14. Syrbe, R.-U.; Neumann, I.; Grunewald, K.; Brzoska, P.; Louda, J.; Kochan, B.; Macháć, J.; Dubová, L.; Meyer, P.; Brabec, J.; et al. The Value of Urban Nature in Terms of Providing Ecosystem Services Related to Health and Well-Being: An Empirical Comparative Pilot Study of Cities in Germany and the Czech Republic. *Land* 2021, 10, 341.
15. Bustamante, G.; Guzman, V.; Kobayashi, L.C.; Finlay, J. Mental Health and Well-Being in Times of COVID-19: A Mixed-Methods Study of the Role of Neighborhood Parks, Outdoor Spaces, and Nature among US Older Adults. *Health Place* 2022, 76, 102813.
16. Pouso, S.; Borja, Á.; Fleming, L.E.; Gómez-Baggethun, E.; White, M.P.; Uyarra, M.C. Contact with Blue-Green Spaces during the COVID-19 Pandemic Lockdown Beneficial for Mental Health. *Sci. Total Environ.* 2021, 756, 143984.
17. Williams, J.B.; Jose, R.; Moobela, C.; Hutchinson, D.J.; Wise, R.; Gaterell, M. Residents' Perceptions of Sustainable Drainage Systems as Highly Functional Blue Green Infrastructure.

Landsc. Urban Plan. 2019, 190, 103610.

18. Mumtaz, M. Role of Civil Society Organizations for Promoting Green and Blue Infrastructure to Adapting Climate Change: Evidence from Islamabad City, Pakistan. *J. Clean. Prod.* 2021, 309, 127296.

19. Kronenberg, J.; Haase, A.; Łaszkiewicz, E.; Antal, A.; Baravikova, A.; Biernacka, M.; Dushkova, D.; Filčak, R.; Haase, D.; Ignatieve, M.; et al. Environmental Justice in the Context of Urban Green Space Availability, Accessibility, and Attractiveness in Postsocialist Cities. *Cities* 2020, 106, 102862.

20. Cucca, R.; Thaler, T. Social Justice in the Green City. *Urban Plan.* 2023, 8, 279–282.

21. Brown, J.; Acey, C.S.; Anthonj, C.; Barrington, D.J.; Beal, C.D.; Capone, D.; Cumming, O.; Pullen Fedinick, K.; MacDonald Gibson, J.; Hicks, B.; et al. The Effects of Racism, Social Exclusion, and Discrimination on Achieving Universal Safe Water and Sanitation in High-Income Countries. *Lancet Glob. Health* 2023, 11, e606–e614.

22. Palliwoda, J.; Haase, A.; Suppee, C.; Rink, D.; Priess, J. Visions for Development and Management of Urban Green and Blue Infrastructure: A Citizen's Perspective. *Ecol. Soc.* 2022, 27, 8.

23. Grellier, J.; White, M.P.; Albin, M.; Bell, S.; Elliott, L.R.; Gascón, M.; Gualdi, S.; Mancini, L.; Nieuwenhuijsen, M.J.; Sarigiannis, D.A.; et al. BlueHealth: A Study Programme Protocol for Mapping and Quantifying the Potential Benefits to Public Health and Well-Being from Europe's Blue Spaces. *BMJ Open* 2017, 7, e016188.

24. Zwierzchowska, I.; Haase, D.; Dushkova, D. Discovering the Environmental Potential of Multi-Family Residential Areas for Nature-Based Solutions. A Central European Cities Perspective. *Landsc. Urban Plan.* 2021, 206, 103975.

25. Dawidowicz, A.; Dudzińska, M. The Potential of GIS Tools for Diagnosing the SFS of Multi-Family Housing towards Friendly Cities—A Case Study of the EU Member State of Poland. *Sustainability* 2022, 14, 6642.

26. Baró, F.; Haase, D.; Gómez-Baggethun, E.; Frantzeskaki, N. Mismatches between Ecosystem Services Supply and Demand in Urban Areas: A Quantitative Assessment in Five European Cities. *Ecol. Indic.* 2015, 55, 146–158.

27. Nikodinoska, N.; Paletto, A.; Pastorella, F.; Granvik, M.; Franzese, P.P. Assessing, Valuing and Mapping Ecosystem Services at City Level: The Case of Uppsala (Sweden). *Ecol. Model.* 2018, 368, 411–424.

28. Water Quality Assessments: A Guide to the Use of Biota, Sediments and Water in Environmental Monitoring, 2nd ed.; Chapman, D.V. (Ed.) CRC Press: London, UK, 2021; ISBN 978-1-00-306210-3.

29. van der Meulen, E.S.; van Oel, P.R.; Rijnaarts, H.H.M.; Sutton, N.B.; van de Ven, F.H.M. Suitability Indices for Assessing Functional Quality of Urban Surface Water. *City Environ. Interact.* 2022, 13, 100079.

30. Li, J.; Huang, L.; Zhu, K. Ecological Health Assessment of an Urban River: The Case Study of Zhengzhou City, China. *Sustainability* 2023, 15, 8288.

31. Kimic, K.; Ostryz, K. Assessment of Blue and Green Infrastructure Solutions in Shaping Urban Public Spaces—Spatial and Functional, Environmental, and Social Aspects. *Sustainability* 2021, 13, 11041.

32. Langie, K.; Rybak-Niedziółka, K.; Hubačíková, V. Principles of Designing Water Elements in Urban Public Spaces. *Sustainability* 2022, 14, 6877.

33. Kuzniecow Bacchin, T.; Ashley, R.; Sijmons, D.; Zevenbergen, C.; Timmeren, A. Green-Blue Multifunctional Infrastructure: An Urban Landscape System Design New Approach. In Proceedings of the 13th International Conference on Urban Drainage, Sarawak, Malaysia, 7–12 September 2014.

34. ISO 37120:2018. Sustainable Cities and Communities—Indicators for City Services and Quality Of Life. ISO: Geneva, Switzerland, 2018. Available online: <https://www.iso.org/standard/68498.html> (accessed on 8 September 2023).

35. Sharma, A.K.; Pezzaniti, D.; Myers, B.; Cook, S.; Tjandraatmadja, G.; Chacko, P.; Chavoshi, S.; Kemp, D.; Leonard, R.; Koth, B.; et al. Water Sensitive Urban Design: An Investigation of Current Systems, Implementation Drivers, Community Perceptions and Potential to Supplement Urban Water Services. *Water* 2016, 8, 272.

36. Gianferrara, E.; Boshoff, J. The PERFECT (Planning for Environment and Resource Efficiency in European Cities and Towns) Project—Expert Paper 1: Health, Wealth and Happiness—The Multiple Benefits of Green Infrastructure; Town and Country Planning Association: London, UK, 2018.

37. Well, F.; Ludwig, F. Blue–Green Architecture: A Case Study Analysis Considering the Synergetic Effects of Water and Vegetation. *Front. Archit. Res.* 2020, 9, 191–202.

38. Noszczyk, T.; Gorzelany, J.; Kukulska-Koziel, A.; Hernik, J. The Impact of the COVID-19 Pandemic on the Importance of Urban Green Spaces to the Public. *Land Use Policy* 2022, 113, 105925.

39. Ingenieur-, Architektur- und Managementberatung—Ramboll Group. Available online: <https://www.ramboll.com/de-de> (accessed on 17 November 2023).

Retrieved from <https://encyclopedia.pub/entry/history/show/120439>