

Detection of Food Allergens

Subjects: **Others**

Contributor: Mingfei Pan

Food allergies have seriously affected the life quality of some people and even endangered their lives. At present, there is still no effective cure for food allergies. Avoiding the intake of allergenic food is still the most effective way to prevent allergic diseases. Therefore, it is necessary to develop rapid, accurate, sensitive, and reliable analysis methods to detect food allergens from different sources. Aptamers are oligonucleotide sequences that can bind to a variety of targets with high specificity and selectivity, and they are often combined with different transduction technologies, thereby constructing various types of aptamer sensors. In recent years, with the development of technology and the application of new materials, the sensitivity, portability, and cost of fluorescence sensing technology have been greatly improved. Therefore, aptamer-based fluorescence sensing technology has been widely developed and applied in the specific recognition of food allergens.

allergen

detection

aptamer

1. Introduction

Food allergies, an adverse reaction to antigenic substances in food mediated by the immune system, have been recognized as a global health issue with increasing prevalence in the field of food safety [1][2]. Most food allergies are immunoglobulin (Ig) E-mediated type I (immediate type) hypersensitivity reactions [3]. An epidemiological survey by the institute of infectious diseases shows that about 6–9.3% of children and 3.4–5.0% of adults have food allergies, which means the incidence of food allergies in infants and children is generally higher than that of adults [4][5][6]. However, there is still no standard cure for food allergies except avoiding eating foods that contain allergens. Therefore, the development of rapid and effective detection methods for allergens in food matrices is a topic of concern in the whole society.

In the past few decades, many mature techniques have been widely used in the detection of food allergens, such as the enzyme-linked immunosorbent assay (ELISA), liquid chromatography-mass spectrometry (LC-MS), and polymerase chain reaction (PCR) [7][8][9]. The ELISA method has been widely used in the detection of food allergens due to its high specificity and sensitivity. Nevertheless, due to the influence of various external conditions such as food processing methods, there would be false positive and false negative results [10][11]. Moreover, PCR method is usually used for monitoring allergic components in food processing due to its high specificity and high automation. However, PCR technology is not suitable for identifying allergen proteins with unascertained genes, which limits its scope of application [12][13]. Furthermore, HPLC and LC-MS are standard strategies for the quantitative analysis of allergens in various food matrices. Because of the precision requirements of the instruments, these methods usually require strict sample pre-treatment processes, a larger sample volume, and a

longer analysis time, resulting in a higher detection cost [14]. Currently, biosensors with high sensitivity and specificity, such as surface-enhanced Raman spectroscopy (SERS), electrochemical biosensors, and quartz crystal microbalance (QCM) biosensors, can rapidly analyze and screen food allergens and allow on-site analysis, which are considered effective detection technology [15][16][17]. However, these biosensors usually require expensive instruments, proficient operators, and higher requirements for the surrounding environment. Therefore, there is an urgent need to develop rapid, accurate, sensitive, and easy-to-operate detection methods to quantify allergens in food matrices.

Nucleic acid aptamer is a nucleic acid sequence that can specifically recognize the target, screened by systematic evolution of ligands by exponential enrichment (SELEX) in vitro [18]. The combination of aptamer and target is achieved through single-stranded oligonucleotide deoxyribonucleic acid (DNA) or ribonucleic acid (RNA) folded into a specific three-dimensional structure (stem-loop, hairpin and G-quadruplex and other spatial conformations) [19][20][21]. Regardless of the technical requirements for the preparation of aptamers, the convenience and timeliness far exceed those of antibodies. Moreover, the screened aptamers can be artificially synthesized, which is easy to achieve standardization. In recent years, aptamers have received extensive attention due to their veracity, high specificity, and affinity, and they have been used in disease diagnosis and treatment, drug delivery, food safety testing, and environmental monitoring [22][23][24]. In terms of food safety, the application of aptamers to the detection of allergens in food matrices is expected to achieve the goal of accurate, rapid, and low-cost detection of allergens.

Fluorescence detection technology, due to its low cost, high sensitivity, simple performance, has attracted wide attention [25][26][27]. Combining fluorescence detection technology with aptamers, the development of biosensors with high sensitivity and simple detection procedures provides a feasible strategy for the detection of food allergens [28]. Aptamer-based fluorescence sensing detection is a relatively common analysis method. The fluorophore is combined with the aptamer in a labeled or non-labeled manner, and the analyte concentration and other information are reflected by the interaction of the excitation light and the identification element [29][30]. Furthermore, fluorescence intensity, decay rate, spectral properties, and fluorescence anisotropy can be used alone or in combination as signal detection means.

2. Classification of Food Allergens

A great variety of food allergens exist widely in nature. According to the source of food allergens, they can be classified into animal allergens, plant allergens, and fungal allergens. **Table 1** lists the classification of major food allergens, allergy symptoms, and other information. Specific information about food allergies is also discussed in the following sections.

Table 1. The major allergens in food matrices and their allergenic properties.

Food	Major Allergens	Molecular Mass (kDa)	Types of Proteins	The Structure of Proteins	Allergy Symptoms	Reference
Fish	Pan h 1	10–13	Calbindin	Contains 3 EF-hand regions (a motif composed of a 12-residue loop with a 12-residue- α -helix domain on each side), 2 of which can bind calcium.	Blushing, hives, nausea, stomach pain, and intestinal bleeding.	[31]
	Cra c 1	33–39	Protein bound to actin	Adopting an α -helix structure, two molecules are entangled with each other to form a parallel dimeric α -helix structure.		[32]
Shellfish				Arginine kinase consists of an N-terminal domain (1–111) and a C-terminal domain (112–357). The N-terminal domain is all α -helices, and the C-terminal domain is an 8-strand anti-parallel β -sheet structure surrounded by 7 α -helices.	Nausea, diarrhea, abdominal pain, and muscle paralysis.	
	Cra c 2	38–45	Phosphoglycoprotein			[33]
Milk	Bos d 8	57–37.5	Phosphate calcium binding protein	Consists of 4 independent proteins: α s1-casein, α s2-casein, β -casein, and κ -casein.	Skin rash, urticaria, eczema, vomiting, diarrhea, abdominal cramps, etc.	[34]

Food	Major Allergens	Molecular Mass (kDa)	Types of Proteins	The Structure of Proteins	Allergy Symptoms	Reference
Milk	Bos d 4	14.4	Combine with metal ions and participate in lactose synthesis	With a two-piece structure containing α -single loop and 310 helix larger subdomain.		[35]
	Bos d 5	18	Lipid transporter	Consists of two subunits connected by non-covalent bonds, mainly in the form of dimers.		[36]
Egg	Gal d1	28	Phosphoglycoprotein	Contains 3 independent homologous structural energy domains, and 3 functional domains are arranged consecutively in space.	Eczema, dermatitis, urticaria, vomiting, diarrhea, gastroesophageal reflux, etc.	[37]
Giant cell tumor of the bone	Gal d2	45	Phosphoglycoprotein	Containing 4 free sulfhydryl groups, composed of 385 amino acid residues, these amino acid residues are twisted and folded to form a spherical structure with high secondary structure, most of which are α -helix and β -sheet.		[38]
	Gal d3	77	Iron-binding glycoprotein	Consisting of 686 amino acids, including 12 disulfide		[39]

Food	Major Allergens	Molecular Mass (kDa)	Types of Proteins	The Structure of Proteins	Allergy Symptoms	Reference
				bonds, the N-terminal and C-terminal 2 domains each contain a binding site for Fe^{3+} .		
	Gal d4	14.3	Basic globulin	A single peptide chain composed of 18 kinds of 129 amino acid residues, with 4 pairs of disulfide bonds to maintain the enzyme configuration, with lysine at the N-terminus and leucine at the C-terminus.		[40]
Peanut						
	Ara h 1	63.5	7S Globulin	The secondary structure contains β -turns, and the quaternary structure is a trimeric complex formed by 3 monomers.	Angioedema, hypotension, asthma, anaphylactic shock, etc.	[41]
	Ara h 2	17–20	2S Albumin	A monomeric protein.		[42]
	Ara h 3	57	11S Globulin	The N-terminal and C-terminal domains of the monomer form contain 2 ciupin folds (composed of two sets of parallel β -turns, random		[43]

Food	Major Allergens	Molecular Mass (kDa)	Types of Proteins	The Structure of Proteins	Allergy Symptoms	Reference
Wheat	Tri a 36	40	Gluten	coils and 3 α -helices).	Wheat exercise stimulates allergies, urticaria, dermatitis, bread asthma, nausea, and diarrhea.	[44]
	Gly m 5	150–200	7S Globulin	Trimer composed of α' -subunit, α -subunit and β subunit.		[45]
Soybean	Gly m 6	320–360	11S Globulin	A hexamer composed of the interaction of G1, G2, G3, G4, and G5 subunits.	Red and itchy skin, asthma and allergic rhinitis, abdominal pain, diarrhea, etc.	[46]
Nuts	Ana o 1	50		Exist as a trimer in natural state.	Metallic taste in the mouth, edema of the tongue or throat, difficulty breathing and swallowing, urticaria all over the body, flushing of the skin, cramping abdominal pain, nausea.	[47]
	Jug r 2	44	7S legumin	Consists of 593 amino acid residues.		[48]
	Cor a 11	48		Consists of 401 amino acid residues, with two potential N-glycosylation sites (Asn38 and Asn254) and a leader peptide of 46 amino acids.		[49]
	Ana o 3	14	2S albumin	Composed of 5 helical structures, containing 2 subunits, connected by cysteine		[50]

Food	Major Allergens	Molecular Mass (kDa)	Types of Proteins	The Structure of Proteins	Allergy Symptoms	Reference
				disulfide bonds.		
Jug r 1		15–16		Consists of 142 amino acid residues.		[51]
Jug r 4		58.1		Except for the first 23 amino acid residues which are predicted as signal peptides, the remaining part has a total of 507 amino acid residues.		[52]
Cor a 9		40	11S globulin	Composed of 515 amino acid residues, the sequence homology with Ara h 3 is about 45%.		[53]
Pru du 6		350		Exist in the form of hexamers, each monomer subunit is composed of one acid chain of 40 to 42 kDa and one alkaline chain of 20 kDa.		[54]

detected by ELISA. *J. Food Control*. 2010, 10, 108334.

9. Xiong, W.L.; Parker, C.H.; Boo, C.C.; Fiedler, K.L. Comparison of allergen quantification strategies for egg, milk, and peanut in food using targeted LC-MS/MS. *Anal. Bioanal. Chem.* 2021, 413, 5755–5766.

3. Detection of Animal Food Allergens

10. Yu, Z.W.; Wang, Y.Q.; Li, Z.X.; Pramod, S.N.; Zhang, L.J.; Lin, H. Development of ELISA method for detecting crustacean major allergen tropomyosin in processed food samples. *Food Anal. Method.* 2019, 12, 2719–2729. Seafood allergy is not only an important public health issue, but a serious food safety issue that affects the quality of life and may even be life threatening [55]. For people with seafood allergies, avoiding foods containing seafood allergens is still the best option. Therefore, the monitoring of allergens is a process that requires strict supervision [56]. In order to evaluate seafood allergens, new detection methods with high sensitivity and high efficiency are required using a monoclonal antibody-based direct sandwich enzyme-linked immunosorbent assay. *LWT-*

As *Food Sci. Technol.* 2019, 116, 108516 to operate and can effectively reduce or eliminate the interference from complex matrices in food. Therefore, based on functionalized magnetic nanoparticles (MNPs) as a separation carrier, Zhang et al. developed a simple and versatile label-free aptamer-based fluorescent sensor for the sensitive detection of TM (**Figure 1a**) [57]. In the study, OliGreen dye was selected as a fluorescent signal probe. The aptamer hybridizes with the capture probe bound to the surface of the MNPs to form an aptamer-MNPs complex as detection probe. When interacting with the target, the conformation of the complex changes, resulting in the release of the aptamer from the surface of the MNPs. So, the released aptamer in the supernatant produced a significant fluorescence enhancement signal, which is because the combination of OliGreen dye and ssDNA will produce ultrasensitive and specific fluorescence enhancement phenomenon. It is worth noting that when the commercially available OliGreen dye is in the free state, the fluorescence is weak or no fluorescence, but the coated zein nanophotonic films to detect peanut allergen, Ara h1, using surface enhanced raman spectroscopy. *Talanta* 2016, 150, 224–232, conditions, the linear range was $0.4\text{--}5\text{ }\mu\text{g mL}^{-1}$ ($R^2 = 0.996$), with a limit of detection LOD of 77 ng mL^{-1} . In addition, the highly selective aptamer-based fluorescent sensor for food safety analysis in the detection of TM in food matrix. *W. Foods* 2018, 7, 111. similar sensor with a LOD of 4.2 nM and the concentration linear from $0.5\text{--}50\text{ }\mu\text{g mL}^{-1}$ [58]. Recently, Chinappan et al. developed an aptamer-based fluorescent-labeled sensor for the detection of TM. (**Figure 1b**) [59]. Graphene oxide (GO) is used as a platform for screening the minimum length of aptamer sequences that can bind to the target with high affinity. A fluorescein dye labeled GO quenches the truncated aptamer by π -stacking and hydrophobic interactions. After the addition of TM, the fluorescence was restored due to the competitive binding of the aptamer to GO. More importantly, the aptamer selected in this study is a truncated aptamer fragment, which has $10\text{--}12$ times higher affinity than the full-sequence aptamer, with a LOD of 2.5 nM . The developed aptamer-based fluorescence sensor can complete the detection within 30 min. The performance of the sensor was confirmed in the addition experiment of chicken broth, and a high percentage recovery rate ($\sim 97\text{ }+\text{ }10\%$) was achieved. Compared with the above studies, the sensitivity and specificity of this work have been greatly improved.

20. Yan, C.; Zhang, J.; Yao, L.; Xue, F.; Lu, J.F.; Li, B.G.; Chen, W. Aptamer-mediated colorimetric method for rapid and sensitive detection of chloramphenicol in food. *Food Chem.* 2018, 260, 208–212.

21. Song, S.H.; Gao, Z.F.; Guo, X.; Chen, G.H. Aptamer-based detection methodology studies in food safety. *Food Anal. Methods* 2019, 12, 966–990.

22. Liu, L.S.; Lu, X.L.; Zhao, Y.X. Aptamer-based strategies for cancer diagnosis and therapy. *J. Nanosci. Nanotechnol.* 2016, 16, 6611–6621.

23. Gray, B.P.; Kelly, L.; Ahrens, D.P.; Barry, A.P.; Kratschmer, C.; Levy, M.; Sullenger, B.A. Tunable cytotoxic aptamer-drug conjugates for the treatment of prostate cancer. *Proc. Natl. Acad. Sci. USA* 2018, 115, 4761–4766.

Figure 1. (a) Schematic of preparation of magnetic-assisted fluorescent aptamer for tropomyosin detection. Reproduced with permission from: *W. Foods* 2018, 7, 111. Copyright Sensors and Actuators B: Chemical, 2018. (b) Schematic of electrochemical molecular recognition-based aptasensor for multiple protein detection. *Anal. Biochem.* 2015, 491, 31–36. Copyright Food Chemistry, 2020.

25. Markova, L.; Myslinski, N.; Kana, M.; Tarko, J.; Myslinski, W. Fluorescence-based method for rapid detection of food allergens, without any pre-treatment. *Chem. Technol. Fuels Oils* 2016, **52**, 194–202.

26. Zienkiewicz, K.; Alche, J.D.; Zienkiewicz, A.; Tormo, A.; Castro, A.J. Identification of olive pollen functionalized carbon quantum dots (cCQDs) and GO for the detection of shellfish allergen arginine kinase (AK) allergens using a fluorescence-based 2D multiplex method. *Electrophoresis* 2015, **36**, 1043–1050. [\[CrossRef\]](#) [\[PubMed\]](#)

27. Wang, T.; Zeng, L.H.; Li, D.L. A review on the methods for correcting the fluorescence inner-filter effect of fluorescence spectrum. *Appl. Spectrosc. Rev.* 2017, **52**, 883–908.

28. Fu, L.L.; Qian, Y.F.; Zhou, J.R.; Zheng, L.; Wang, Y.B. Fluorescence-based quantitative platform for ultrasensitive food allergen detection: From immunoassays to DNA Sensors. *Compr. Rev. Food Sci. Saf.* 2020, **19**, 3343–3364.

29. Zhang, G.X.; Liu, Y.L.; Yang, M.; Huang, W.S.; Xu, J.H. An aptamer-based, fluorescent and radionuclide dual-modality probe. *Biochimie* 2020, **171**, 55–62.

30. Ma, P.F.; Guo, H.L.; Duan, N.; Ma, X.Y.; Yue, L.; Gu, Q.H.; Wang, Z.P. Label-free structure-switching fluorescence polarization detection of chloramphenicol with truncated aptamer. *Talanta* 2021, **230**, 122349.

31. Dijkema, D.; Emmons, J.A.M.; Van de Ven, A.A.J.M.; Elberink, J.O. Fish allergy: Fishing for novel diagnostic and therapeutic options. *Clin. Rev. Allergy Immunol.* 2020.

32. Wai, C.Y.Y.; Leung, N.Y.H.; Leung, P.S.C.; Chu, K.H. Modulating shrimp tropomyosin-mediated allergy: Hypoallergen DNA vaccines induce regulatory T cells to reduce hypersensitivity in mouse model. *Int. J. Mol. Sci.* 2019, **20**, 4656.

33. Xing, P.; Yu, H.Q.; Li, M.; Xiao, X.J.; Jiang, C.L.; Mo, L.H.; Zhang, M.; Yang, F.C.; Liu, Z.G. Characterization of arginine kinase, a novel allergen of *Dermatophagoides farinae* (Der f 20). *Am. J. Transl. Res.* 2015, **7**, 2815–2823.

34. Wasik, M.; Nazimek, K.; Nowak, B.; Askenase, P.W.; Brynarski, K. Delayed-type hypersensitivity underlying casein allergy is suppressed by extracellular vesicles carrying miRNA-150. *Nutrients* 2019, **11**, 907.

35. Cong, Y.J.; Zhou, S.Y.; Li, L.F. Identification of the critical amino acid residues of immunoglobulin E and immunoglobulin G epitopes in alpha-lactalbumin by alanine scanning analysis. *J. Food Sci.* [\[CrossRef\]](#) [\[PubMed\]](#)

Fig 2001 2002, **84**, \$2597–\$2608 “on-off-on” fluorescence aptasensor for AK detection. Reproduced with permission from [\[61\]](#). Copyright Microchemical Journal, 2020. (B) Schematic of a dual-mode fluorescence sensor for PV detection based on AuNP color changes and FAM-CS2 fluorescence changes. (C) a: Schematic of the aptamer selection procedure by capturing GO-SELEX; b: Affinity of Apt5 towards PV; c: Specificity of Apt5 towards PV.

36. Surucu, O.; Abaci, S. Electrochemical determination of beta-lactoglobulin in whey proteins. *J. Food Meas. Charact.* 2020, **14**, 11–19.

37. Sunrun, M.; Gets, R.; Grishac, G.; Suarez-Farinés, M.; Sampson, H.A. Epitope-specific antibody binding on major hen's egg-white allergen, ovomucoid, using novel multiplex immunoassay. *Allergy* 2019, **74**, 256–257.

38. Birmingham, S.; Fidler, P.; Reid, B.; Black, G.; Kals, T.; Thorpe, G.; Wavell, S.; Chapman, M.; Chantrey, J. Diversity of site-specific assays for the quantification of major food allergens in cow's milk (Casein, Caseinopeptidase, α-lactalbumin (Gal4), α-lactalbumin (Gal2) or α-lactalbumin (Gal3)). *Food Allergy*. 2019; 7: 438. [\[CrossRef\]](#) [\[PubMed\]](#) [\[Google Scholar\]](#)

39. Hwang, H.S.; Kim, B.S.; Park, H.; Park, H.Y.; Choi, H.D.; Kim, H.H. Type and branched pattern of 2C(a), aptamer towards PY was obtained by in vitro screening of random ssDNA library containing a 40-mer N-glycans and their structural effect on the chicken egg allergen ovotransferrin: A comparison with randomized region using the triple-mode GO-SELEX. The aptamer-modified gold nanoparticle (AuNP-APT), ovomucoid. *Glycoconj. J.* 2014; 31, 41–50. [\[CrossRef\]](#)

40. Tan, L.; Cheng, K.W.; Goh, S.H. Lysosome and mucolysis—The hidden allergen. *Singap. Med. J.* 2020; 61, 497. [\[CrossRef\]](#)

41. Ramesh, M.; Yuengyongviwat, A.; Konstantinou, G.N.; Lieberman, J.; Pascal, M.; Masliahani, M.; Sampson, H.A. Peanut T-cell epitope discovery: Ara h 1. *J. Allergy Clin. Immunol.* 2016; 137, 1764–1771. [\[CrossRef\]](#)

42. Shroba, J.; Barnes, C.; Nanda, M.; Dinakar, C.; Ciaccio, C. Ara h2 levels in dust from homes of individuals with peanut allergy and individuals with peanut tolerance. *Allergy Asthma Proc.* 2017; 38, 192–196. [\[CrossRef\]](#)

Recently, as an alternative to antibodies, the use of peptide aptamers as biosensors has attracted more attention. 43. Pandey, A.K.; Varshney, R.R.; Sudini, H.K.; Pandey, M.K. An improved enzyme-linked immunosorbent assay (ELISA) based protocol using seeds for detection of five major peanut allergens Ara h 1, Ara h 2, Ara h 3, Ara h 6, and Ara h 8. *Front. Nutr.* 2019; 6, 68. [\[CrossRef\]](#)

44. Gomes, R.; Loureiro, C.; Pita, C.; Todo-Bom, A. Tri a 19 and wheat exercise-dependent urticaria. *Allergy* 2015; 70, 605–606. [\[CrossRef\]](#)

45. Stojsin, D.; Malinovska, T.; Postin, C.; Ward, J.; Wang, Y.C.; Liu, Z.L.; Li, B.; Glenn, K. Natural variability of allergen levels in conventional soybeans: Assessing variation across north and south america from five production years. *J. Agric. Food Chem.* 2017; 65, 463–472. [\[CrossRef\]](#)

46. Geng, T.; Stojsin, D.; Liu, K.; Schaalje, B.; Postin, C.; Ward, J.; Wang, Y.C.; Liu, Z.L.; Li, B.; Glenn, K. Natural variability of allergen levels in conventional soybeans: Assessing variation across north and south america from five production years. *J. Agric. Food Chem.* 2017; 65, 463–472. [\[CrossRef\]](#)

47. Archila, L.D.; Chow, I.T.; McCarty, J.W.; Renand, A.; Jeong, D.; Robinson, D.; Farrington, M.L.; Kwok, W.W. Ana o 1 and Ana o 2 cashew allergens share cross-reactive CD4(+) T cell epitopes. *Exp. Allergy* 2016; 40, 871–883. [\[CrossRef\]](#)

In order to reduce the incidence of cashew allergy, a hydrolyzed casein hydrolysate formula (HF) has been commercialized as a substitute for milk [66]. Nevertheless, in some cases, infants who consume these formula milk powder still have 48. Schein, C.; Teuber, S.S.; Cheng, H.; Grimm, C.C.; Maleki, S.J. Antibodies to the physicochemical-allergic reactions because of residual β-lactoglobulin in HF [67]. Therefore, it is necessary to establish a method that consensus sequence of Jug r 2 containing glutamine-rich repeats bind allergens in peanuts and can detect the lower concentration of β-lactoglobulin. Shi et al. used carbon dots (CDs) as a fluorescent signal and other tree nuts. *J. Allergy Clin. Immunol.* 2013; 131, AB21.

49. Iwan, M.; Vissers, Y.M.; Fiedorowicz, B.; Kostyra, H.; Kostyra, E.; Savelko, H.F.; J. Microbe-labeled Fe₃O₄ NPs as a magnetic separator to establish a fluorescent-labeled assay for the detection of β-lactoglobulin [68]. The assay is based on the hybridization between aptamers immobilized on Fe₃O₄ NPs and biotin-labeled complementary oligonucleotides (ODN). In the presence of β-lactoglobulin, the aptamer preferentially binds to β-lactoglobulin and part of ODN is released into the solution. After magnetic separation, the fluorescence signal of the supernatant increased with the increase of β-lactoglobulin concentration. Based on this, the aptamer

62. Wang, J.; Bi, B.; Li, H.; Ma, Z.; Zhou, J.; Ji, R.; Yu, Q.; Gao, F.; and Li, A. Colorimetric and fluorescent dual-signal detection of bioluminescent gold nanoparticles with x-ray based excitation (Figure 4a). [\[72\]](#) Sensors for rapid albumin detection. *Microchim. Acta* 2020, **159**, 105413. Sensors are designed to detect Lys quickly and sensitively through FRET. The use of low-dose X-rays as the excitation source

63. Shi, Y.P.; Pan, Y.; Zhang, H.; Zhang, Z.M.; Li, M.J.; Yi, C.Q.; Yang, M.S. A dual-mode nanosensor based on carbon quantum dots and gold nanoparticles for discriminative detection of glutathione fluorescence sensor with high sensitivity (LOD: 0.94 nM), specificity, and sample recovery. In addition, this in human plasma. *Biosens. Bioelectron.* 2014, **56**, 39–45.

technology can provide a new generation of high-efficiency strategy without autofluorescence interference for the

64. Li, H.; Tian, N.; Dong, J.X.; Zhang, Y.; Fan, Y.Z.; Lin, S.M.; Luo, H.Q.; Li, N.B. A colorimetric and fluorometric dual-signal sensor for arginine detection by inhibiting the growth of gold nanoparticles/carbon quantum dots composite. *Biosens. Bioelectron.* 2017, **87**, 772–778.

65. Phadke, C.; Tada, S.; Kono, K.; Hiyama, A.; Takase, Y.; Gayam, S.; Aigaki, T.; Ito, Y.; Uzawa, T. Instantaneous detection of alpha(s)-casein in cow's milk using fluorogenic peptide aptamers. *Anal. Methods-UK* 2020, **12**, 1368–1373.

66. Lozano-Ojalvo, D.; Perez-Rodriguez, L.; Pablos-Tanarro, A.; Lopez-Fandino, R.; Molina, E. Pepsin treatment of whey proteins under high pressure produces hypoallergenic hydrolysates. *Innov. Food Sci. Emerg.* 2017, **43**, 154–162.

67. Shi, M.L.; Cen, Y.; Sohail, M.; Xu, G.H.; Wei, F.D.; Ma, Y.S.; Xie, X.M.; Ma, Y.J.; Song, Y.Y.; Hu, Q. Aptamer based fluorometric beta-lactoglobulin assay based on the use of magnetic nanoparticles and carbon dots. *Microchim. Acta* 2018, **185**, 40.

68. Qi, S.; Duan, N.; Sun, Y.H.; Zhou, Y.; Ma, P.F.; Wu, S.J.; Wang, Z.P. High-affinity aptamer of allergen beta-lactoglobulin: Selection, recognition mechanism and application. *Sensor Actuators B-Chem.* 2021, **340**, 129956.

69. Panahipour, L.; Tabatabaei, A.A.; Gruber, R. Hypoallergenic infant formula lacks transforming growth factor beta activity and has a lower anti-inflammatory activity than regular infant formula. *J. Dairy Sci.* 2020, **103**, 6771–6781.

70. Wu, J.; Hou, Y.; Wang, P.Y.; Wang, Z.N.; Li, Y.J.; Wang, S.; Yang, M. Detection of lysozyme with aptasensor based on fluorescence resonance energy transfer from carbon dots to graphene oxide. *Luminescence* 2016, **31**, 1207–1212.

71. Sapkota, K.; Dhakal, S. FRET-based aptasensor for the selective and sensitive detection of lysozyme. *Sensors* 2020, **20**, 914.

72. Li, X.L.; Yu, Z.S. Determination of selenium in biological samples with an energy-dispersive X-ray fluorescence spectrometer. *Appl. Radiat. Isot.* 2016, **111**, 45–49.

73. Ou, X.Y.; Chen, Y.Y.; Xie, L.L.; Chen, J.; Zan, J.; Chen, X.F.; Hong, Z.Z.; He, Y.; Li, J.; Yang, H.H. X-ray nanocrystal scintillator-based aptasensor for autofluorescence-free detection. *Anal. Chem.* 2019, **19**, 10149–10155.

74. Jimenez-Lopez, J.C.; Foley, R.C.; Brear, E.; Clarke, V.C.; Lima-Cabello, E.; Florido, J.F.; Singh, K.B.; Alche, J.D.; Smith, P.M.C. Characterization of narrow-leaf lupin (*Lupinus angustifolius* L.) recombinant major allergen IgE-binding proteins and the natural beta-conglutin counterparts in sweet lupin seed species. *Food Chem.* 2018, 244, 60–70.

Retrieved from <https://encyclopedia.pub/entry/history/show/37839>