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Semantic segmentation techniques for remote sensing images (RSIs) have been widely developed and applied. When a

large change occurs in the target scenes, model performance drops significantly. Therefore, unsupervised domain

adaptation (UDA) for semantic segmentation is proposed to alleviate the reliance on expensive per-pixel densely labeled

data.
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1. Introduction

Image segmentation has been widely researched as a basic remote sensing intelligent interpretation task . In

particular, semantic segmentation based on deep learning plays an important role as a pixel-level classification method in

remote sensing interpretation tasks, such as building extraction , landcover classification  and change detection .

However, the prerequisite for good performance in existing fully supervised deep learning approaches is sufficiently

annotated data. It is also essential that the training and test data follow the identical distributions . Once applied to

unseen scenarios with different data distributions, model performance can degrade significantly . This means new

data might be annotated and retrained for performance requirements, which requires considerable labor and time .

In practical applications, the domain discrepancy problem is prevalent in remote sensing images (RSIs) . Different

remote sensing platforms, payload imaging mechanisms, and photographic angles will induce variations in image spatial

resolution and object features . Due to the variation in seasons, geographic locations, illumination, and atmospheric

radiation conditions, the same source images may also show significant feature distribution differences . The data

distribution shift caused by the mix of these complex factors leads the segmentation network to behave poorly in the

unseen target domain.

As a transfer learning paradigm , unsupervised domain adaptation (UDA) can improve the domain generalization

performance of the model by transferring knowledge from the source domain data with annotations to the target domain

. This method has been extensively researched in computer vision to address the domain discrepancy issue in natural

image scenes . Domain adaptive (DA) methods have also gained intensive attention in remote sensing . Compared

with natural images, RSIs contain more complex spatial detail information and object boundary situation, and

homogeneous and heterogeneous phenomena are more common in images. Additionally, the factors that generate

domain discrepancies are more complex and diverse. Thus, solving the problem of domain discrepancies in RSIs became

more challenging. Currently, existing research works focus on three main approaches: UDA based on image transfer 

, UDA based on deep adversarial training (AT), and UDA based on self-training (ST) . Image transfer methods

achieve image-level alignment based on generative adversarial networks. AT-based methods (as shown in Figure 1a)

reduce the feature distribution in the source and target domains by minimizing the adversarial loss to achieve feature-level

alignment . The ST approach (as shown in Figure 1b) focuses on generating high-confidence pseudolabels in the

target domain and then participating in the iterative training of the model to achieve the progressive transfer process 

.

Figure 1. General paradigm description of existing DA training methods. (a) AT based DA approach. (b) Self-training (ST)

based DA approach. (c) A combined ST and AT for DA methods.
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One general conclusion about the DA performance of the model is: AT + ST > ST > AT . However, as shown in Figure
1c, combining ST and AT methods typically requires strong coupling between submodules, which leads to a poorly

stabilized model during training . Therefore, fine-tuning the network structure and the submodules parameters is

generally needed, so that model performance depends on specific scenarios and loses its scalability and flexibility.

Recently, several studies have been conducted to optimize and improve the process, such as decoupling AT and ST

methods functionally by constructing dual-stream networks , and using exponential moving average (EMA) techniques

to construct teacher networks to smooth instable features in the training process . However, it also complicates the

network architecture, increasing the spatial computational complexity, and reducing training efficiency.

2. Image-Level Alignment for UDA

Image-level alignment reduces the data distribution shift between the source and target domains through image transfer

methods . This scheme generates pseudo images that are semantically identical to the source images, but whose

spectral distribution is similar to that of the target images . Cycle-consistent adversarial domain adaptation (CyCADA)

improves the semantic consistency of the image transfer process through cycle consistency loss . To preserve the

semantic invariance of RSIs after being transferred, ColorMapGAN designs a color transformation method without a

convolutional structure . Many UDA schemes adopt GAN-based style transfer methods  to align data distributions in

the source and target domains. ResiDualGAN  introduces scale information of RSIs based on DualGAN . Some

work also leverages non-adversarial optimization transform methods, such as Fourier transform-based FDA  and Wallis

filtering methods , to reduce image domain discrepancies.

3. Feature-Level Alignment by AT

Adversarial-based feature alignment methods train additional domain discriminators  to distinguish target samples

from source samples and then train the feature network to fool the discriminator, thus generating a domain-invariant

feature space . Many works have made significant progress using AT to align the feature space distribution to reduce

the domain variance in RSIs. Wu et al.  focused on interdomain category differences and proposed class-aware

domain alignment. Deng et al.  designed a scale discriminator to detect scale variation in RSIs. Considering regional

diversity, Chen et al.  focused on difficult-to-align regions through a region adaptive discriminator. Bai et al. 

leveraged contrast learning to align high-dimensional image representations between different domains. Lu et al. 

designed global-local adversarial learning methods to ensure local semantic consistency in different domains.

4. Self-Training for UDA

Self-training acts as a kind of semi-supervised learning , which involves high-confidence prediction as easy-to-transfer

pseudolabels, and participates in the next iteration of training together with the corresponding target images, progressively

realizing the knowledge transfer process . Yao et al.  used the ST paradigm to improve the performance of the

model for building extraction on unseen data. CBST  designs class-balanced selectors for pseudolabels to avoid the

easy-to-predict classes becoming dominant. ProDA  computes representation prototypes that represent the centers of

category features to correct pseudolabels. CLUDA  constructs contrast learning between different classes and different

domains by mixing source and target domain images. Additionally, several works have attempted to combine ST and

adversarial methods to improve domain generalization performance. However, these models are difficult to optimize and

often require fine-tuning of the model parameters. Zhang et al.  established the two-stage training process of AT

followed by ST. DecoupleNet  decouples ST and AT through two network branches to alleviate the difficulty of model

training.

5. Consistency Regularization

Consistency regularization is generally employed to solve semi-supervised problems, where the essential idea is to

preserve the output consistency of the model under different versions of input perturbations, thus improving the

generalization ability of the model for test data . FixMatch  establishes two network flows, which include weak

perturbation augmentation and strong perturbation augmentation at the image level, using the weak perturbation to

ensure the high quality of the output and using the strong perturbation to provide better training of the model. FeatMatch

 extracts class representative prototypes for feature-level augmentation transformations. Liu et al.  constructed dual-

teacher networks to provide more rigorous pseudolabels for unlabeled test data. UniMatch  provides an auxiliary

feature perturbation stream using a simple dropout mechanism. Several recent regularization models have been designed
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under the ST paradigm, but fail to account for domain discrepancy scenes, which has led to the fact that pure consistency

regularization has not behaved remarkably well in cross-domain scenes.
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