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Multiple myeloma (MM) accounts for about 10% of hematological malignancies. It is a plasma cell malignancy that

originates from the post-germinal lymphoid B-cell lineage, and is characterized by an uncontrolled clonal growth of

plasma cells. The discovery of non-coding RNAs as key actors in multiple myeloma has broadened the molecular

landscape of this disease, together with classical epigenetic factors such as methylation and acetylation.

microRNAs and long non-coding RNAs comprise the majority of the described non-coding RNAs dysregulated in

multiple myeloma, while circular RNAs are recently emerging as promising molecular targets. 
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1. Introduction

Multiple myeloma (MM) accounts for about 10% of hematological malignancies. It is a plasma cell malignancy that

originates from the post-germinal lymphoid B-cell lineage, and is characterized by an uncontrolled clonal growth of

plasma cells. It is preceded by monoclonal gammopathy of undetermined significance (MGUS) that progresses to

smoldering myeloma and finally to symptomatic MM .

Frequently, these clones of plasma cells invade the adjacent bone and occasionally infiltrate multiple organs,

causing symptoms such as hypercalcemia, renal insufficiency, anemia, and bone lesions. In the past decades, the

therapeutic landscape of MM has improved with the development of targeted therapies, chemotherapeutic agents,

and immunotherapy. Despite this, relapses are common .

2. Methylation

DNA methylation is a central epigenetic modification in cancer. It plays an important regulatory role in transcription,

chromatin structure and genomic stability, X chromosome inactivation, genomic imprinting, and carcinogenesis .

Global hypomethylation in cancer cells was one of the first epigenetic alterations found in carcinogenesis.

Moreover, certain genes are inactivated due to hypermethylation of CpG islands in regulatory regions. This process

is catalyzed by DNA methyltransferases (DNMT) and involves the addition of a methyl group to the carbon 5

position of the cytosine ring in the CpG dinucleotide, generating a 5-methylcytosine (5mC) . The opposite

process of demethylation is mainly catalyzed by TET enzymes, which can oxidize 5mC to 5-hydroxymethylcytosine

(5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC). These oxidized products can then be removed by

base excision repair and substituted by cytosine in a locus-specific manner . However, despite the finding of
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TET2 loss-of-function mutations in some hematological malignancies, there is very few knowledge about their role

in MM .

Methylation patterns have been shown to be different depending on the stage of MM progression. In non-malignant

stages and MGUS, demethylation occurs mainly in CpG islands. At the transition from MGUS to MM, the key

feature is a strong loss of methylation, associated with genome instability. In malignant stages, changes in

methylation are widespread in the genome, outside of CpG islands, and affect various pathways, such as cell cycle

and transcriptional activity regulators . DNMT3A is hypermethylated and underexpressed in MM, leading to a

global hypomethylation. Interestingly, DNA hypermethylation in B-cell specific enhancers seems to be a key feature

of MM-staged cells. These hypermethylated regions are located in binding sites of B-cell specific transcription

factors, thus leading to an impaired expression of those and, consequently, a more non-differentiated cell profile in

MM cells. This hypermethylation in B-cell-specific enhancers has been found in stem cells; it is progressively

eliminated in non-malignant B cells and reacquired again in MM cells .

Genomic studies have been performed to explain the role of promoter hypermethylation of tumor suppressor

genes. Preliminary studies revealed that in MM patients, there was aberrant methylation in genes such as SOCS-1,

p16, CDH1, DAPK1, and p73. Hypermethylation of crucial tumor modulating genes, such as GPX3, RBP1, SPARC,

and TGFBI has been associated with a significantly shorter overall survival, independently of age, International

Staging System (ISS) score, and adverse cytogenetics .

Moreover, several signaling pathways were found to be dysregulated in MM. STAT3 overexpression due to

promoter hypermethylation was associated with an adverse prognosis and was mainly induced by IL-6 signaling

. DNA methyltransferase inhibitors (DNMTi), such as 5-azacytidine, were shown to revert hypermethylation and

exerted synergistic anti-MM effects with bortezomib . Therefore, several clinical trials have been conducted to

assess DNMTi efficacy in combination with anti-MM agents, such as lenalidomide or dexamethasone .

3. Acetylation

Acetylation is one of the major reversible post-translational modifications that introduces an acetyl group on histone

lysine residues, thus modifying the gene expression pattern. It involves a dynamic process, consisting of a balance

between the activity of histone acetyltransferases (HATs) and histone deacetylases (HDACs). This balance serves

as a key regulator that influences many cellular processes such as cell cycle, chromatin structure, and gene

expression .

HATs catalyze the attachment of acetyl groups, resulting in a less condensed chromatin structure. CREB-binding

protein CBP/p300 family is a HAT type A enzyme, whose mutations are often related to cancer development. It is

located in the nucleus and involved in the acetylation of histones. CBP/p300 is dysregulated in hematological

malignancies  and, in the case of MM, inhibition of CBP/p300 has been shown to induce cell death via the

reduction of IRF4 expression . This could open a promising therapeutic strategy but however, the majority of

studies are focused on HDACs, which catalyze the amide hydrolysis of acetylated lysines. HDACs constitute a
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family of 18 proteins subdivided into four classes based on homology to yeast HDACs: class I (HDAC1-3, HDAC8),

class IIa (HDAC4-5, HDAC7, HDAC9), class IIb (HDAC6, HDAC10), class III (SIRT1-7), and class IV (HDAC11).

Alterations in their activity have been discovered in a broad range of tumors, including MM. Their targets include

histones but also non-histone proteins such as p53, Hsp90, and p65 NF-κB .

The essential role played by HDACs in cancer and MM progression has led to the development of HDAC inhibition

strategies. Pan-HDAC inhibitors seem to show stronger clinical inhibition of HDAC1, HDAC2, HDAC3, and HDAC6

than other HDACs. This suggests that their anti-tumor activity may focus on class I and class IIb HDAC inhibition

. Several HDAC inhibitors, such as romidespin (class I HDAC inhibitor) or panobinostat (pan-HDAC inhibitor)

induce high cytotoxicity against MM cells, especially in combination with proteasome inhibitors such as bortezomib.

Nevertheless, due to the wide range of targets, they also showed unfavorable side effects in clinical trials . To

avoid these problems, the development of selective HDAC inhibitors has become critical in MM research. To date,

HDAC6 inhibitors (i.e., ricolinostat) are the ones showing encouraging results in MM treatment. HDAC6 is essential

for aggresome formation, an alternative clearance pathway that is activated in response to proteasome inhibition to

eliminate misfolded proteins . The synergistic inhibition of proteasome and aggresome pathways leads to the

accumulation of misfolded proteins, resulting in cell death , therefore, unveiling a promising strategy involving

the combination of HDAC6 and proteasome inhibitors to tackle resistance in MM.

4. Non-Coding RNAs

Efforts in the study of the genome have classically focused on protein-coding genes that include only a small

percentage of the mammalian genome. In the last years, a special emphasis has been placed on the non-protein-

coding genome. The development of genomic and transcriptomic technologies has highlighted that 70% of the

transcribed human genome corresponds to ncRNAs . ncRNAs are divided in two groups: structural and

regulatory ncRNAs. Structural ncRNAs include transfer RNAs (tRNAs), ribosomal RNAs (rRNAs), small nuclear

RNAs (snRNAs), and small nucleolar RNAs (snoRNAs). These ncRNAs are part of the machinery involved in

protein synthesis. Regulatory ncRNAs are divided depending on their size: microRNAs (miRNAs) and PIWI-

interacting RNAs (piRNAs) are less than 200 nucleotides long, while long non-coding RNAs (lncRNAs) comprise

the biggest. Another type of ncRNAs are circular RNAs (circRNAs), which mainly function as miRNA sponges .

4.1. microRNAs

miRNAs are 19 to 25 base-pair-long ncRNA molecules that trigger the translational repression, and sometimes

degradation, of target messenger RNAs (mRNAs) with complementary sequences. Alterations in miRNAs have

raised special interest in cancer research, including MM (Table 1). miRNAs constitute one of the central and most-

studied post-transcriptional regulator components affecting myelomagenesis, MM progression, development, and

prognosis. miRNAs can be classified into tumor-suppressive miRNAs, when they target an oncogenic gene, or

oncogenic miRNAs, when they target a tumor suppressor gene, and they are tissue-specific.
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Activity/Pathway Affected miRNA
Status

Target References

Enhances PI3K/Akt

pathway

miR-20a EGR2, PTEN

miR-21 PIAS3

miR-25-3p PTEN

miR-221/222 PUMA, PTEN, CDKN1B, p27

miR-410 KLF10

Enhances mTOR pathway

miR-19b TSC1

miR-135b, miR-

642a
DEPTOR

Related to a hypoxia

phenotype

miR-210 DIMT1

miR-1305 MDM2, IGF1, FGF2

Disrupts PRC2 activity miR-124 EZH2

Modulates microenvironment

miR-146a Not described

miR-155 Not described

Promotes proliferation, circulating

miRNAs
miR-17-92 BIM

1
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Activity/Pathway Affected miRNA
Status

Target References

miR-221/222

Circulating miRNA

miR-1 Not described

miR-133a/b Not described

miR-135b HIF1A

miR-146b Not described

miR-181a BCL2L11

miR-214 CD276

Represses JAK/STAT pathway

miR-125b IL6R, STAT3, MALAT1

miR-331-3p IL6R

miR-375 PDPK1

miR-451 IL6R

let-7b-5p IGF1R

Regulates cyclin activity miR-26a CDK6

miR-28-5p CCND1

1
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References

Activity/Pathway Affected miRNA
Status

Target References

miR-30a-3p MAF

miR-338-3p CDK4

miR-340-5p CCND1, NRAS

miR-196a/b CCND2

Regulates proliferation

miR-22 c-Myc

miR-29a c-Myc

miR-34a
BCL2, CDK6, NOTCH1, c-Myc,

MET, IL6R

miR-193a MCL1

miR-497 BCL2

miR-767-5p MAPK4

miR-874-3p HDAC1

miR-1180 YAP

Prevents angiogenesis miR-15a/16 BCL2, VEGF, IL17

1
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 Arrow up indicates overexpression of the miRNA, and arrow down indicates underexpression of the miRNA.

miRNAs may act in clusters, where a group of miRNAs have their expression regulated concomitantly. One of the

largest clusters involved in MM is miR-17-92, a six-member polycistronic cluster encoding for six individual

miRNAs: miR-17, miR-18a, miR-19a, miR-19b, miR-20a, and miR-92a. Some of these miRNAs are known for

regulating the PTEN/PI3K/Akt pathway (Figure 1). This cluster was demonstrated to take part in controlling cell

proliferation, differentiation, and apoptosis, as it was positively regulated by c-Myc, which conferred to this cluster a

key role in MM tumorigenesis . Several studies have empirically proven, using functional assays, that BIM is the

direct target of miR-17-92. This was confirmed in MM cells with upregulated miR-17-92 that showed an increased

expression of anti-apoptotic Bcl-2 . Despite their coordinated role, some of the miRNAs belonging to this

cluster also had specific functions. Interestingly, miR-20a was highly expressed in bone marrow samples of MM

patients when compared to healthy donors. The introduction of a synthetic substitutive miR-20a (mimic-based

approach) showed an increased growth rate and decreased apoptosis in the U266 MM cell line, and a promoted

tumor growth in a SCID/NOD mouse xenograft model . PTEN was shown to be a downstream target of miR-

20a, pointing out the PTEN/PI3K/Akt pathway as altered by miR-20a . miR-19b specifically targeted the tumor-

suppressive co-chaperone TSC1 and activated the mTOR pathway, which promoted cancer stem cell (CSC)

proliferation .
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Figure 1. Overview of the main signaling pathways altered by miRNAs in MM cells. Oncogenic miRNAs (red) are

overexpressed, and tumor-suppressive miRNAs (green) are underexpressed in MM cells.

4.2. Long Non-Coding RNAs

lncRNAs include ncRNAs whose transcripts are longer than 200 nucleotides. Their classification is performed

depending on their localization (Figure 2). Nowadays, there is an incomplete understanding of the mechanism of

action of lncRNAs, but it is widely accepted that they play an important role in cancer .

Figure 2. lncRNA classification attending to their localization. The enhancer, intronic, and intergenic lncRNAs

contain their own promoters that are distinct from protein coding gene. Bidirectional lncRNAs share promoter with a
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protein coding gene and are transcribed from the opposite strand of the gene. Antisense (AS) lncRNAs have been

involved in the transcriptional interference of the neighboring protein coding genes.

In MM, dysregulated lncRNAs affect various aspects of the disease (Table 2). Several of them act as competing

endogenous RNAs (ceRNAs), having miRNAs as targets and acting as miRNA sponges (Table 3) .

Table 2. lncRNAs that are dysregulated in MM.
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 Arrow up indicates overexpression of the lncRNA, and arrow down indicates underexpression of the lncRNA.

Table 3. Genes dysregulated in MM due to overexpression of ceRNA lncRNAs.
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4.3. Other ncRNAs

The impact of ncRNA dysregulation in MM goes beyond the well-studied miRNAs and lncRNAs. piRNAs constitute

a very recent family of 24-31 nucleotide RNAs that can be abnormally expressed in various cancers. piRNA-823 is

the only described example of its kind involved in MM pathogenesis so far . Its overexpression was associated

with a poor prognosis, suggesting that its detection could be part of a suitable risk stratification strategy. The

oncogenic action of piRNA-823 seemed to be mediated through de novo methylation, as its overexpression was

associated with DNMT3A/3B expression levels in primary MM cells . Moreover, levels of piRNA-823 were higher

in extracellular vesicles shed by MM cells, suggesting that this may promote proliferation, angiogenesis, and

invasion in endothelial cells . These findings reinforce the importance of cellular communication between MM

cells and the microenvironment, also via piRNAs.

snoRNAs are also relevant in cancer development. Beyond their canonical function in rRNA processing, mRNA

splicing and editing, as well as stress responses, they are involved in pathological processes such as cell

transformation, tumorigenesis, and metastasis. The most important finding about snoRNAs in MM involved ACA11,

an orphan box H/ACA snoRNA encoded within an intron of MMSET . ACA11 was found to be localized into
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nucleoli and bound to a small nucleolar ribonucleoprotein (snRNP). This led to the downregulation of ribosomal

protein genes that are associated with the control of oxidative stress . Recently, new studies showed that ACA11

upregulated ribosome biogenesis in a reactive oxygen species-dependent manner, suggesting that the increased

level of protein synthesis driven by ACA11 made MM cells more sensitive to proteasome inhibitors . Moreover,

elevated levels of tRNA were seen in MM cells to accommodate their increased need for protein translation

machinery . Therefore, it is reasonable to state that the detection of this snoRNA could help assess the efficacy

of a bortezomib-based therapy.

Recently, circRNAs has been seen as a promising new therapeutic approach for MM. circRNAs are covalently-

closed RNAs due to the junction of their 5′ and 3′ ends, which can remain relatively stable in the cytoplasm. This

closed structure confers them an important variety of functions, such as acting as miRNA sponges, interacting with

RNA binding proteins, or acting as scaffolds for the formation of enzyme-substrate complexes. circRNAs were

identified as being key regulators of some hallmarks of cancer, including unaltered growth, apoptosis evasion,

limitless replicative potential, sustained angiogenesis, tissue invasion and metastasis, as well as stemness . A

recent analysis of the genome wide profiling showed circRNA expression patterns in MM . circ_0000190 was

found to negatively regulate miR-767-5p in the cytoplasm and to inhibit cell viability, proliferation, and MM

progression in both in vitro and in vivo models through the MAPK4 pathway . Besides, circ-CDYL was found to

regulate miR-1180 and to overexpress YAP, ultimately triggering MM uncontrolled growth . The duality of

functions between suppressive and inductive tumor roles is also present in circRNAs and some were proposed as

possible biomarkers. hsa_circ_0007841 was upregulated in MM cell lines, but also differentially expressed in MM

patients depending on their staging. Besides, it targeted several miRNAs regulating bortezomib sensitivity and

osteoclast differentiation . The newly described hsa_circ_0003489 induced the overexpression of HDAC1 by

sponging its repressor, miR-874-3p, and maintaining cell viability and proliferation. Its knock-down led to a

sensitivity to bortezomib . These new findings reinforce the idea that circRNAs could be suitable molecular

targets in innovative therapies against MM and that their detection could be valuable for assessing and monitoring

MM development in patients.

5. Conclusions

Recent findings on epigenetic and ncRNA alterations involved in MM have suggested their importance in the

development and progression of the disease. A considerable amount of these dysregulations affects crucial

pathways implicated in the cell cycle, proliferation, genomic stability, angiogenesis, and hypoxia. Besides, the

identification of ncRNA biomarkers suggests their potential use as efficient diagnosis and prognosis tools.

However, more research is still required. The emergence of techniques such as CRISPR-Cas opens the way for

possibilities to develop new treatments and improve the outcome of MM patients.
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