

Comparative Spatial Vitality Evaluation Based Sustainable Urban Form

Subjects: **Urban Studies**

Contributor: Jinliu Chen , Haoqi Wang , Zhuo Yang , Pengcheng Li , Geng Ma , Xiaoxin Zhao

Sustainable urban forms (SUF) guide spatial creation, significantly revitalise the development of traditional settlements, and are essential theoretical support for urban design. At the same time, the emergence of quantitative spatial analysis technology further promotes the visualised evaluation of the performance of spatial vitality in urban design. The high vitality of an urban settlement could be achieved by combining SUF-based design guidelines and UFI-based evaluation systems. The spatial vitality evaluation system based on the SUF could assist and optimise decision-making in design and act as a paradigm for urban design or urban regeneration in traditional towns.

sustainable urban form

spatial vitality

Space Syntax

urban design

traditional settlement space

1. Introduction

Traditional settlements could extend the radiation scope of public services for rural areas, create industrial nodes, and improve township integration ^[1]. However, due to extensive and intensive urban construction, traditional settlements have faced severe impacts, leading to the destruction of the traditional landscape, insufficient investment and management, and longer-term residents leaving ^{[2][3][4][5]}. In response to these challenges, current traditional settlement policies and planning directions are increasingly related to sustainable development ^{[6][7]}. For example, scholars have explored traditional settlement environmental creation and intervention combined with bioclimate characteristics ^[8], protecting and upgrading traditional settlements by improving energy efficiency and reducing energy consumption ^[9].

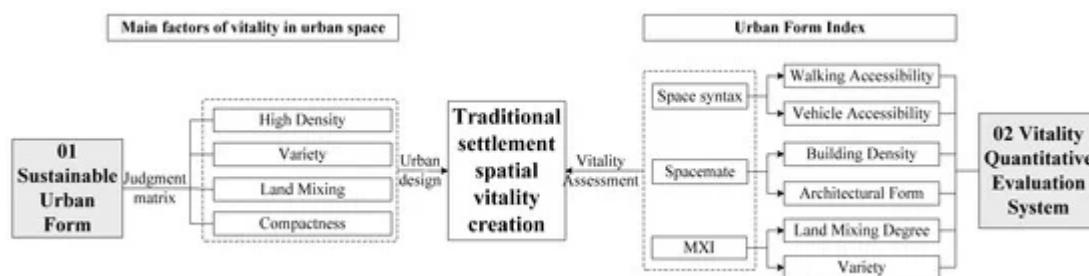
However, the merging process of traditional settlement intervention strategies and sustainable development may encounter difficulties, requiring a balance between tangible and intangible values ^[10]. In this context, SUF theory guides spatial activation and sustainable development, and is an essential theoretical support for urban design in traditional settlements ^[11].

2. The Connotation of Sustainable Urban Form (SUF)

The connotation of a SUF contains broader contents ^{[12][13]}, which can not only serve as operational guides for shaping spatial forms, but also guide the creation of high-quality urban dynamic space and the reactivation of stock

space [14]. Current research on SUFs mainly includes high density, densification, land use, ecological environment, and other aspects [15][16]. Milder believes compactness is the essential factor for sustainable urban forms [17]. Holden believes sustainable urban development points to dispersed concentrations, relatively small settlements with highly dense populations and short distances between houses and public services [18]. Most relevant research topics focus on urban renewal and transformation, aiming to guide the construction of environmentally friendly spatial forms through SUF theory [19][20][21][22].

In terms of guiding the content of the SUF, compactness, high density, and mixed land use are significant factors that influence spatial vitality in urban design. These metrics are all used to respond to urban problems via rapid urbanisation, and relevant empirical research is also relatively comprehensive. It involves multiple disciplines and has formed a relatively complete qualitative and quantitative evaluation model, including concepts [23]. Scholars believe that the current theoretical exploration of sustainable urban morphology is faced with issues such as effectiveness, social acceptance and practical operability. Scholars have conducted research on sustainable urban form models [24][25][26] and practical applications; just as some scholars proposed a new network structure of a compact and multi-centre mode to guide urban development, others suggested building a new framework for a compact eco-city system by creating a six-law coordination system to make up for the current urban defects, and some scholars of the SUF theory point of view concluded that the urban morphology of Zhengzhou would be "L"-shaped (or sickle-shaped), and with the change of regional development environment, it would be "petal"-shaped or "T"-shaped in the long term [27][28][29].


In addition to urban space, traditional settlements as mediations of conventional culture and vernacular architecture should also be taken seriously [30]. They are a typical spatial carrier for villagers' working, living, and entertaining activities. The purpose of traditional settlements is mainly residence. The traditional spatial configuration and architectural elements reflect and carry important local culture and customs, represent local history and culture and are crucial for extending territorial identity. SUF theory provides significant guidance in creating vitality in settlements owing to its spatial synergetic and coordination impact [31]. However, few guiding principles focus on traditional settlements based on the SUF or solve issues such as that of "one side of thousand towns".

3. Spatial Vitality Creation and Evaluation

Traditional settlement research focuses on enhancing spatial vitality by forming a high-quality built environment and promoting sustainable development. The guidelines for creating vibrant spaces in settlements include the accessibility of streets [32], architectural forms [33], the functional mixing degree [34][35], and green ecological design in the physical space aspect. In addition, the aggregation of multi-element spaces and multi-level activities are very effective and important ways to reflect the cultural vitality of a space [36], establishing a spiritual space centred on natural landscape images [37], and thereby enhancing the vitality of the settlement space [38].

Current researchers have constructed evaluation methods with a specific judgment matrix based on the SUF [39], such as density, diversity, mixed land use, and compactness [13][40]. These metrics respond to the economic and environmental needs of urban settlements for industries during the transformation process. SUF-based settlement

research methods are biased towards qualitative research, which involves quantitatively evaluating indicators in the evaluation system through field surveys based on interviews and questionnaires [41][42]. However, qualitative and quantitative methods such as the analytic hierarchy process (AHP) [43] and Delphi [44] are used to integrate evaluation results. Limited by sample size, there are still problems of being too subjective and inefficient, making it difficult for these methods to adapt to the current demand for high-quality development of traditional settlements. With a new round of technological breakthroughs and the improvement of statistical methods [45][46][47][48][49][50], new possibilities have been provided for quantitatively assessing sustainable urban morphology. Berghauser and Haupt sorted out the current quantitative methods for determining urban morphology from the perspective of density and space in 2009 [51]. Ye extended the research methods with an urban form index (UFI), including “Space syntax, Spacemate and spatial mixing (MXI)”, and selected three cities with different historical backgrounds in the Netherlands for empirical research. Ye found that the UFI-based quantitative spatial analysis results were matched with those of the GPS individual circulation investigation, proving the analysis framework's validity and reliability [52]. Recent research shows that the UFI has been proven to have a high reference value for the evaluation of spatial vitality creation [53][54] (Figure 1).

Figure 1. Framework for creating and evaluating the vitality of settlement spaces based on SUF.

In general, the current research on creating and evaluating the vitality of space mainly focuses on the urban and regional scale [55], while the methodology focuses on qualitative research [56]. Nevertheless, there are few studies on developing and assessing the vitality of space in small-town settlements with quantitative spatial analysis based on the SUF perspective.

References

1. Gu, X.; Xie, B.; Zhang, Z.; Guo, H. Rural multifunction in Shanghai suburbs: Evaluation and spatial characteristics based on villages. *Habitat Int.* 2019, 92, 102041.
2. Hao, P.; Sliuzas, R.; Geertman, S. The development and redevelopment of urban villages in Shenzhen. *Habitat Int.* 2011, 35, 214–224.
3. Aguilar, A.G.; Ward, P.M.; Smith, C.B. Globalization, Regional Development, and Mega-City Expansion in Latin America: Analyzing Mexico City's Peri-Urban Hinterland. *Cities* 2003, 20, 3–21.

4. Ford, A.; Carr, A.; Mildwaters, N.; Fonotti, D.; Jackmond, G. *Promoting Cultural Heritage for Sustainable Tourism Development: Samoa*; New Zealand Institute for Pacific Research: Auckland, New Zealand, 2019; ISBN 0473482819.
5. Palmer, C.G.; Fry, A.; Libala, N.; Ralekhetla, M.; Mtati, N.; Weaver, M.; Mtintsilana, Z.; Scherman, P.-A. Engaging society and building participatory governance in a rural landscape restoration context. *Anthropocene* 2022, 37, 100320.
6. Ristić, D.; Vuković, D.; Milinčić, M. Tourism and sustainable development of rural settlements in protected areas—Example NP Kopaonik (Serbia). *Land Use Policy* 2019, 89, 104231.
7. Xu, J.; Yang, M.; Hou, C.; Lu, Z.; Liu, D. Distribution of rural tourism development in geographical space: A case study of 323 traditional villages in Shaanxi, China. *Eur. J. Remote Sens.* 2021, 54, 318–333.
8. Yarrow, T. Building on the Past: Exploring the Intersections between Energy, Environment and Authenticity through an Ethnographic Study of Renovation. In Proceedings of the 2nd International Conference on Preservation, Maintenance and Rehabilitation of Historic Buildings and Structures, Porto, Portugal, 22–24 July 2015; pp. 22–24.
9. Philokyprou, M.; Michael, A. Environmental Sustainability in the Conservation of Vernacular Architecture. The Case of Rural and Urban Traditional Settlements in Cyprus. *Int. J. Arch. Herit.* 2021, 15, 1741–1763.
10. Saleh, M.A.E. The Integration of Tradition and Modernity: A Search for an Urban and Architectural Identity in Arriyadh, the Capital of Saudi Arabia. *Habitat Int.* 1998, 22, 571–589.
11. Frey, H. *Designing the City: Towards a More Sustainable Urban Form*; Taylor & Francis: New York, NY, USA, 2003; ISBN 1135814058.
12. Bibri, S.E. Data-driven smart sustainable cities of the future: An evidence synthesis approach to a comprehensive state-of-the-art literature review. *Sustain. Future* 2021, 3, 100047.
13. Hu, J.; Ren, L.J.; Yun, Y. Review of Foreign Studies on Sustainable Urban Form from the Perspective of Healthy Cities. *Urban Plan. Int.* 2021, 36, 11.
14. Wang, Y. Compact Growth: Urban Form, Density, and Sustainability. *Urban Plan. Int.* 2017, 32, 1.
15. Duan, J.; Ji, S. Method of Problem-Oriented Comprehensive Urban Design. *City Plan. Rev.* 2015, 7, 57–63.
16. Masnavi, M.R.; Gharai, F.; Hajibandeh, M. Exploring urban resilience thinking for its application in urban planning: A review of literature. *Int. J. Environ. Sci. Technol.* 2018, 16, 567–582.
17. Milder, J. Sustainable Urban Form. In *Sustainable Urban Environments: An Ecosystem Approach*; Springer: Dordrecht, The Netherlands, 2011; pp. 263–284.

18. Holden, E. Ecological footprints and sustainable urban form. *J. Hous. Built Environ.* 2004, 19, 91–109.
19. Jabareen, Y.R. Sustainable Urban Forms: Their Typologies, Models, and Concepts. *J. Plan. Educ. Res.* 2006, 26, 38–52.
20. Lynch, K. *Good City Form*; The MIT Press: Cambridge, MA, USA, 1984.
21. Wentz, E.A.; York, A.M.; Alberti, M.; Conrow, L.; Fischer, H.; Inostroza, L.; Jantz, C.; Pickett, S.T.; Seto, K.C.; Taubenböck, H. Six fundamental aspects for conceptualizing multidimensional urban form: A spatial mapping perspective. *Landsc. Urban Plan.* 2018, 179, 55–62.
22. Jones, C.; Leishman, C.; MacDonald, C. Sustainable Urban Form and Residential Development Viability. *Environ. Plan. A* 2009, 41, 1667–1690.
23. Dorst, H.; van der Jagt, A.; Raven, R.; Runhaar, H. Urban greening through nature-based solutions—Key characteristics of an emerging concept. *Sustain. Cities Soc.* 2019, 49, 101620.
24. Mobaraki, A.; Vehbi, B.O. A Conceptual Model for Assessing the Relationship between Urban Morphology and Sustainable Urban Form. *Sustainability* 2022, 14, 2884.
25. Moroke, T.; Schoeman, C.; Schoeman, I. Developing a neighbourhood sustainability assessment model: An approach to sustainable urban development. *Sustain. Cities Soc.* 2019, 48, 101433.
26. Dadashpoor, H.; Azizi, P.; Moghadasi, M. Analyzing spatial patterns, driving forces and predicting future growth scenarios for supporting sustainable urban growth: Evidence from Tabriz metropolitan area, Iran. *Sustain. Cities Soc.* 2019, 47, 101502.
27. Wu, Y.; Yuan, J. Is There a Regulation in the Expansion of Urban Spatial Structure? Empirical Study from the Main Urban Area in Zhengzhou, China. *Sustainability* 2022, 14, 2883.
28. Korkmaz, C.; Balaban, O. Sustainability of urban regeneration in Turkey: Assessing the performance of the North Ankara Urban Regeneration Project. *Habitat Int.* 2020, 95, 102081.
29. Hu, J.; Ren, L.J.; Liu, L.; Liu, D.; Yun, Y. Model Construction of Zhengzhou Urban Form Evolution Based on the Factor Analysis. *J. Guilin Univ. Technol.* 2018, 38, 263–268.
30. Huang, J.; Cui, Y.; Chang, H.; Obracht-Prondzyńska, H.; Kamrowska-Zaluska, D.; Li, L. A city is not a tree: A multi-city study on street network and urban life. *Landsc. Urban Plan.* 2022, 226, 104469.
31. Vythoulka, A.; Delegou, E.T.; Caradimas, C.; Moropoulou, A. Protection and Revealing of Traditional Settlements and Cultural Assets, as a Tool for Sustainable Development: The Case of Kythera Island in Greece. *Land* 2021, 10, 1324.
32. Jalaladdini, S.; Oktay, D. Urban Public Spaces and Vitality: A Socio-Spatial Analysis in the Streets of Cypriot Towns. *Procedia-Soc. Behav. Sci.* 2012, 35, 664–674.

33. Long, Y.; Ye, Y. Humanistic Scale Urban Form: Measurement, Effect Assessment, and Planning and Design Responses. *South Archit.* 2016, 6, 7.

34. Liu, M.; Jiang, Y.; He, J. Quantitative Evaluation on Street Vitality: A Case Study of Zhoujiadu Community in Shanghai. *Sustainability* 2021, 13, 3027.

35. Carmona, M.; Tiesdell, S.; Health, T.; Oc, T. *Public Places, Urban Spaces: The Dimensions of Urban Design*; Architectural Press: New York, NY, USA, 2010.

36. Liu, Q.; Liao, Z.; Wu, Y.; Degefu, D.M.; Zhang, Y. Cultural Sustainability and Vitality of Chinese Vernacular Architecture: A Pedigree for the Spatial Art of Traditional Villages in Jiangnan Region. *Sustainability* 2019, 11, 6898.

37. Xiang, L.; Tian, Y.; Pan, Y. Study on landscape evaluation and optimization strategy of Central Park in Qingkou Town. *Sci. Rep.* 2022, 12, 1978.

38. Liu, H.; Li, X. Understanding the Driving Factors for Urban Human Settlement Vitality at Street Level: A Case Study of Dalian, China. *Land* 2022, 11, 646.

39. Eizenberg, E.; Jabareen, Y. Social Sustainability: A New Conceptual Framework. *Sustainability* 2017, 9, 68.

40. Chen, J.; Pellegrini, P.; Wang, H.; Ma, G. Sustainable Urban Form Based Old Community Regeneration—Taking Jing'anli Community in Tianjin as an Example. *Int. J. Arch. Arts Appl.* 2022, 8, 72–81.

41. Chen, J.; Pellegrini, P.; Xu, Y.; Ma, G.; Wang, H.; An, Y.; Shi, Y.; Feng, X. Evaluating Residents' Satisfaction before and after Regeneration. The Case of a High-Density Resettlement Neighbourhood in Suzhou, China. *Cogent Soc. Sci.* 2022, 8, 2144137.

42. Chen, J.; Pellegrini, P.; Wang, H. Comparative Residents' Satisfaction Evaluation for Socially Sustainable Regeneration—The Case of Two High-Density Communities in Suzhou. *Land* 2022, 11, 1483.

43. Chan, H.K.; Sun, X.; Chung, S.-H. When should fuzzy analytic hierarchy process be used instead of analytic hierarchy process? *Decis. Support Syst.* 2019, 125, 113114.

44. Ameyaw, E.E.; Hu, Y.; Shan, M.; Chan, A.P.C.; Le, Y. Application of Delphi Method in Construction Engineering and Management Research: A Quantitative Perspective. *J. Civ. Eng. Manag.* 2016, 22, 991–1000.

45. Shahraiyni, H.T.; Sodoudi, S. Statistical Modeling Approaches for PM10 Prediction in Urban Areas; A Review of 21st-Century Studies. *Atmosphere* 2016, 7, 15.

46. Shafabakhsh, G.A.; Famili, A.; Bahadori, M.S. GIS-based spatial analysis of urban traffic accidents: Case study in Mashhad, Iran. *J. Traffic Transp. Eng.* 2017, 4, 290–299.

47. Long, Y.; Tang, J. Large-Scale Quantitative Measurement of the Quality of Urban Street Space: The Research Progress. *City Plan. Rev.* 2019, 43, 8.

48. Ye, Y.; Zhuang, Y.; Zhang, L. Designing Urban Spatial Vitality from Morphological Perspective—A Study Based on Quantified Urban Morphology and Activities' Testing. *Urban Plan. Int.* 2016, 1, 26–33.

49. Tang, L.; Lin, Y.; Li, S.; Li, S.; Li, J.; Ren, F.; Wu, C. Exploring the Influence of Urban Form on Urban Vibrancy in Shenzhen Based on Mobile Phone Data. *Sustainability* 2018, 10, 4565.

50. Xing, Z.; Guo, W.; Liu, J.; Xu, S. Toward the Sustainable Development of the Old Community: Proposing a Conceptual Framework Based on Meaning Change for Space Redesign of Old Communities and Conducting Design Practices. *Sustainability* 2022, 14, 4755.

51. Bramley, G.; Power, S. Urban form and social sustainability: The role of density and housing type. *Environ. Plan. B Urban Anal. City Sci.* 2009, 36, 30–48.

52. Ye, Y.; Zhuang, Y. A Hypothesis of Urban Morphogenesis and Urban Vitality in Newly Built-up Areas: Analyses Based on Street Accessibility, Building Density and Functional Mixture. *Urban Plan. Int.* 2017, 32, 43–49.

53. Xia, C.; Zhang, A.; Yeh, A.G.O. The Varying Relationships between Multidimensional Urban Form and Urban Vitality in Chinese Megacities: Insights from a Comparative Analysis. *Ann. Am. Assoc. Geogr.* 2021, 112, 141–166.

54. Huang, J.; Cui, Y.; Li, L.; Guo, M.; Ho, H.C.; Lu, Y.; Webster, C. Re-examining Jane Jacobs' doctrine using new urban data in Hong Kong. *Environ. Plan. B Urban Anal. City Sci.* 2023, 50, 76–93.

55. Chen, J.; Tian, W.; Xu, K.; Pellegrini, P. Testing Small-Scale Vitality Measurement Based on 5D Model Assessment with Multi-Source Data: A Resettlement Community Case in Suzhou. *ISPRS Int. J. Geo-Inf.* 2022, 11, 626.

56. Zhu, M.; Dong, J.; Gao, Y. The Research on Temporal–Spatial Distribution and Morphological Characteristics of Ancient Settlements in the Songhua River Basin. *Sustainability* 2019, 11, 932.

Retrieved from <https://encyclopedia.pub/entry/history/show/102185>