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Permanent grasslands are main habitats for many plant species and pollinators. Their destruction as well as their
intensification has a major impact on plant and pollinator biodiversity, which has a cascading effect on pollination.
However, we lack an understanding of these effects, thereby limiting our ability to predict them. In this review, we
synthesised the literature on the mechanisms behind this cascade to provide new insights into the relationship between
land-use intensification and pollination. By matching functional traits that mediate the relationship between the two trophic
levels, we identified major knowledge gaps about how land-use intensification affects plant—pollinator interactions and
how it favours plants with generalised floral traits, which are likely harmful to pollination.
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| 1. Introduction

Insect pollination on permanent grasslands relies on interactions between flowers and pollinators (hereafter, “plant—
pollinator interactions”). An approach that includes the morphological, physiological and phenological features of
organisms that affect their fitness & is useful because plant and pollinator features together drive plant—pollinator
interactions. These functional features, called “matching traits” [& mediate relationships between the two trophic levels &I,
Several plant traits (hereafter, “floral traits”) and pollinator-matching traits are involved in plant—pollinator interactions
(Table 1). For example, flowers with deep corollas can only be accessed by pollinators with long mouthparts. Matching
trait values can be calculated at the community scale, and the community weighted mean (CWM) is the mean value of
traits weighted by the abundance of each species in a community. Functional diversity (FD) is the value, range, and
relative abundance of functional traits in a given community . In the mass-ratio hypothesis, an ecosystem’s functions
depend on the CWM M. The hypothesis of niche complementarity suggests that greater FD values increase niche
partitioning and lead to species complementary, which serves the ecosystem functions . These hypotheses have been
extensively tested for vegetative functional traits but much less so for the relationships between floral traits and pollination.

Table 1. Summary of known and theoretical effects of agricultural intensification on plant-pollinator matching traits. A
negative effect is indicated by a -; a positive effect by a +. The level of knowledge about these effects can be: tested in the
literature (T), not tested in the literature (NT), indirect (l) or direct (D).
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One way to study the relationships between ecosystem functioning and plant—pollinator interactions is to analyse the

latter’s degree of specialisation. Indeed, the more an interaction network is specialised, the higher the complementarity of
its interactions and the differentiation of species niches 45!, An increase in complementarity implies that more functionally
complementary species are needed to fulfil the ecosystem function 28, Matching traits are useful for describing the niches
of plants and pollinators 24 and providing mechanistic explanations for the degree of complementarity of plant—pollinator
interactions. 8 showed that a plant community with higher floral diversity had higher plant—pollinator interaction network
complementarity (measured by H2', an index that describes the complementarity of interaction, 29). In our review, we
suggest that the CWM of nectar tube depth may decrease with intensification. Hence, flowers may be exploitable by a
larger pool of pollinators, which reflects a plant community with more generalised exploitation-barrier traits. Moreover,
intensification decreases forb richness U and thus may likely decrease flower functional diversity B due to its positive
relationship with taxonomic diversity. Hence, intensification should generate networks with low functional complementary
because of high niche overlap in floral traits among plant species. However, 23l found that intensification decreased plant
species diversity but did not decreased H2', which remained high overall. 21 observed the same lack of correlation
without looking at the effect of intensification.

The degree of network specialisation may be explained in part by the matching traits but also by other processes, such as
resource competition between pollinators. Hence, two competing pollinators with the same matching traits values may
lead to fidelity for a flower (22 that they match less well. This highlights the need to define specialisation of plant—pollinator



interactions carefully 231, However, on intensively managed grasslands, despite the loss of pollinator species, the stability
of pollination function loss may increase, because pollinators are more interchangeable than on less intensive grasslands.

Intensification is likely to decrease the flower functional diversity (e.g., flower colour FD in [&). Two assumptions can be
made concerning the relationship between the FD of floral traits and interaction frequency. First, this relationship may be
negative because a higher FD may blur the visual signal, leading to an increase in search time (serial processing; B4).
This assumption was confirmed in the studies of B and 33, which recorded a low taxonomic diversity of pollinators with a
few generalist pollinator species representing most of interactions. Secondly, we expected a positive relationship between
the functional diversity of floral traits and interaction frequency due to a better distribution of pollinators and a greater
complementarity of pollinator niches 48, Ref. 38 confirmed this hypothesis on permanent grasslands with 247 pollinator
species. The highly diverse pollinator community recorded in this study may have increased the interaction frequency and
the complementary between pollinator niches. Hence, more studies are needed to understand how floral trait functional
diversity affects interaction frequency, and to confront niche theory with cognitive ecology, as the latter is based mostly on
experiments performed under non-natural conditions 57, Lastly, to improve understanding of how niche complementarity
shapes the relations between floral functional diversity and interaction frequency, studies that include functional indices on
each component of functional diversity (e.g., functional evenness, functional richness, functional divergence; ), not
aggregative indices like functional entropy, Ref. 28! are needed.

Besides interaction frequency, information about the quality of interactions is needed 23], Quality per interaction is often
measured as the quantity of pollen deposited by a pollinator during a single visit to a freshly opened flower. This seems to
be positively correlated with pollinator hairiness B[, However, these two studies only focused on three cultivated plants
species with easy access to the reproductive organs. Ref. [81 showed that pollinators’ facial pollen load increased with
facial area and hairiness on 127 bee and fly species and 36 wild plants. Ref. 18 found that intensification led to a
decrease in the CWM of both relative hairiness and body size of pollinators. An increase in the relative abundance of
Diptera, which are less hairy 28161 and smaller than bees 22 and have different pollination behaviour 62 may explain this
result. This shift in pollinator community highlights the need to consider the phylogenetic signals between pollinator effect
traits such as hairiness, body size and behaviour, and their respective effects independently.

| 4. Conclusions

Grassland intensification on floral traits has a cascading effect on the matching traits of pollinators and likely leads to the
selection of plant species with generalised floral traits while decreasing the production of floral rewards. A decrease in
mouthparts length and body size, two correlated traits, is consistent with the above-mentioned changes in floral traits.
Furthermore, shifts in the taxonomic composition of pollinator communities toward Diptera-dominated communities can
also be explained by generalised floral traits and the decrease in rewards production. We advocate for more studies to
examine relationships between pollinator community composition and intensification to determine if the increase in the
relative abundance of Diptera because of intensification is a common pattern.

Second, the data on how grassland intensification affects quantitative floral and pollinator traits are lacking. Indeed, while
some of the matching traits that explain plant—pollinator interactions are well known—e.g., flower colour and insects’
visual systems have been studied for more than 100 years [63__others, like flower odours, have received little attention or
remain to be studied because they belong to different ecological fields. In particular, the impact of grassland intensification
on floral rewards quality has rarely been studied.

Overall, little is known about the effect of intensification on grassland pollination function despite its importance in the
current global pollination crisis. Most studies reviewed here addressed this issue with a quantitative dimension by using
interaction frequency as a proxy of pollination function. We highlighted possible relationships between intensification and
several qualitative dimensions of plant—pollinator interactions by focusing on pollinator hairiness and body size. In
addition, although intensification leads to decreased pollination function, it selects for generalised plant species, but plants
with generalised floral traits may be less pollen-limited than those with specialised floral traits (€41,

Lastly, while the landscape scale has been recognised elsewhere as a main driver of plant—pollinator interactions £, we
showed that local factors may also change them drastically, despite having little knowledge about the ecosystem scale.
This review places these gaps of knowledge into a clear framework, which we hope will motivate researchers to study
them, especially because a holistic view of the human impact on pollination function and pollinators is needed to
understand the current global pollination and pollinator crisis.



