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Extrusion-based 3D concrete printing (E3DCP) has been appreciated by academia and industry as the most

plausible candidate for prospective concrete constructions.

concrete extrusion 3D concrete printing ram extrusion extruder system design

| 1. Introduction

The traditional formwork-casting method inherited from the ancient Romans underpins the foundation of modern
concrete construction. However, the shortcomings of the method have been acknowledged with centuries of
practice. Because of its inability to fulfill the increasing structural, sustainable, economic, social and aesthetic
requirements, the concrete industry has begun to explore candidate technologies that could revolutionize concrete
construction. Buswell et al. 2! outlined a classification framework for the feasible digital fabrication of concrete
(DFC) technologies, as shown in Figure 1. 3D concrete material extrusion—referred to as extrusion-based 3D
concrete printing (E3DCP) in this entry— is a subclass of 3DCP and has been appreciated by academia and
industry as the most plausible candidate for prospective concrete construction. Its commercialization potential has
been well-validated in various industrial projects undertaken by construction companies such as XTree [2, COBOD
Bl WASP [ and Sika . Notice that sometimes equivalence is drawn between E3DCP and 3D concrete printing
(3DCP), which should be avoided, as the latter is more appropriately referred to as “additive” according to the
classification of [, In addition, the scope of E3DCP inherently excludes injection 3D concrete printing &, smart

dynamic casting [, and shotcrete 3D concrete printing [&l.
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Figure 1. The process classification framework of DF(Ltnchnolooies proposed by @

Coating and
) ) deposition ) o
According to a any DFC technology can involve a complex process chalim withiim wnich a single principal process

(i.e., shaping or assembly) and a series of sub-processes (i.e., an indispensable process that occurs while
executing the principal process) can be identified. In the case of E3DCP, the principal process is the shaping,
which consists of the extrusion and deposition processes. However, the sub-processes of E3DCP are more difficult
to generalize, as various customizable fittings can be adapted to the E3DCP mechanical system. Based on the
sub-processes outlined by [ and extensive reviews of the literature, the authors have recognized two categories of
sub-process for E3DCP: (1) basic sub-processes: those inherited from the traditional formwork-casting process,
including the mix proportioning, primary mixing, transport/pumping and curing processes; and (2) advanced sub-
processes: those requiring advanced fittings to improve the printing quality or augment the functionality of E3DCP,
including the secondary mixing, setting-/fluid-on-demand, in-process reinforcement, interlayer bonding

enhancement, finishing, support placement and monitoring and feedback processes.

While the concrete research relating to the basic sub-processes is abundant, the research relating to the principal
process and the advanced sub-processes is scarce due to the fact that they are rarely applied to traditional
concrete construction projects 19, With the advent of E3DCP, more research interest has been paid to these two
topics in this recent decade. Considerable research efforts are dedicated to the material design (e.g., water-to-
cement ratio) of E3DCP, and there have been several prominent review papers LUI2M8IL4] that summarize the
insights in this regard. However, at the time of writing this entry, there is still a lack of a review paper that highlights

the significance of the mechanical design (e.g., nozzle shape, nozzle diameter) of E3DCP.

The complex process chain of E3DCP inevitably entails sophisticated mechanical systems, as shown in Table 1.
The purpose of this entry is to provide a comprehensive review of the mechanical systems of the principal process
and advanced sub-processes for ESDCP applications. The mechanical systems of basic sub-processes are not
included since they are well-established in the concrete industry through decades of practice. Therefore, this entry
only concerns the printing system (for the principal process) and advanced fittings (for the advanced sub-
processes). The printing system consists of two components: (1) the extruder system, also known as the printhead
or manipulator, which performs the extrusion action.; and (2) the positioning system, which enables the deposition
action (i.e., extruder movement). Advanced fittings can be added to the printing system to introduce additional

advanced sub-processes into the E3DCP process chain.
Table 1. E3DCP mechanical system.

Mechanical System

Principal shaping process Printing system Extruder system

Positioning system
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Mechanical System
Mix proportioning system
Primary mixing system
Basic sub-process Basic fittings
Pumping system
Curing system
Secondary mixing system
Setting-/Fluid-on-demand system
In-process reinforcement system
Advanced sub-process Advanced fittings Interlayer bonding enhancement system
Finishing system

Support placement system

Monitoring and feedback system
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[
Reference Positioning System

Degree of Freedom

Build Volume (L x W x H
m)/Reach (m) -

)5-312.

: [44] Gantry 3-axis 20 x 18 x 18

[45] Gantry 3-axis 1.2x1.2x1.0

[46] Gantry 3-axis 0.5x0.39 x 1.1

[47] Robotic arm 6-axis Fanuc R-2000iC/165F -

[48] Gantry 3-axis -

[49] Gantry 3-axis 3.0x3.0x3.0

[501 Robotic arm 6-axis KUKA KR60 HA -

[51] Gantry 3-axis 1.8x1.8x15

(52] Gantry 4-axis 9x45x%x28

[53] Gantry 3-axis 0.15 x 0.15 x 0.12

(54] Robotic arm 6-axis Denso S

[55] Robotic arm 6-axis FANUC R-2000iC/165F -

[56] Gantry 3-axis -

B Robotic arm and 6-axis ABB IRB 4600 robotic arm hanging on a -
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Build Volume (L x W x H

Reference Positioning System Degree of Freedom
m)/Reach (m)
gantry Gudel 3-axis gantry
7] Gantry 3-axis 10.36 x 2.74 x 3.05
= Gantry 3-axis 0.40 x 0.30 x 0.30
(591 Gantry 4-axis -
[27] Gantry 4-axis -
3] Gantry 3-axis Infinite x 14.6 x 8.1
(01 Gantry 3-axis Infinite x 8.53 x 2.59
7] Robotic arm 6-axis 2.65-3.50
2] Robotic arm 7-axis Infinite x Infinite x ~3
(421 Delta system - 17x12 x5
secondary
(4] Delta system - 7x7x12m » Support
vithin the

prinung system generally increase e energy, macnine and maintenance costs (In tne passive systems, tne energy
increase may be insignificant). Additionally, they may increase the energy and material costs as well as the

technical complexity of the overall system, as shown in Table 3.

Table 3. The material costs and technical complexity of the advanced fittings.

Advanced Fittings Material Cost Technical Complexity *
Secondary Static mixer * Higher * Low » The compatibility of
mixing system (additives) different static mixers with
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Advanced Fittings Material Cost Technical Complexity *

(with secondary

different concrete
dosage)

materials.

e The optimization of
mechanical parameters,

] operational parameters,
 Higher

Dynamic mixer e Medium/High

- concrete material property,
(additives) ] ]
chemical admixture type
and dosage and printing

path.

e Thermal gradients that
can lead to non-uniform

modifications of concrete

ties.
Thermal heating «Non Low/Medium/High properties

*

* Numerical modelling of
the thermal effects during

concrete extrusion.

Setting/Fluid on

* Compatibility of magnetic
demand system

particles with concrete
* Higher material materials.
Electro/permanent ] ] ]
(magnetic * Medium/High *
magnet

particles) * The guidelines for
operational parameter

control.

. . ) ] * Impacts of vibration on
Vibration * Non * Medium/High * ) -

the material extrudability.

In-process Entrainment * Higher * Medium/High * * The control of the feed-in

reinforcement (reinforcements)

speed of the reinforcement
system

materials.
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Advanced Fittings

Placing between

layers

Cross-layer

encasement

Cross-layer

penetration

Material Cost

Technical Complexity *

 The correct alignment of
the reinforcement with
respect to the concrete
layer cross-sectional
centroid to prevent
anisotropic properties and

ensure uniform covering

» Concrete materials with
appropriate rheological
properties to seal the
horizontal weak interface
« High/High * which would be otherwise

susceptible for moisture

and chemical invasions.

* Precise positionings of

the reinforcement

 Concrete materials with
appropriate rheological
properties to seal both the
vertical and horizontal
« High/High * weak interfaces
* Precise positionings of
the reinforcement in terms
of the centerline

alignments.

* Precise positionings of
) ) the reinforcement in terms
* High/High * )
of the spacing and

centerline alignments.

https://encyclopedia.pub/entry/42951

12/13



Large-Scale Extrusion-Based 3D Concrete Printing Extruder System Design | Encyclopedia.pub

Advanced Fittings Material Cost Technical Complexity *

. . » Compatibility of the
) « Higher (bonding ) ) )
Bonding agents e Medium bonding agents with the
agents)

Interlayer concrete materials.

bonding
enhancement * The implementations of

e the physical means

Physical * Non * Medium/High ) )
without affecting the

extrusion process.

» More precise precision
Finishing system * Non * High according to the printing
path

* Precise positions of the
supports.

 Higher )
Support placement system * High  The effects of pause on

supports L
(supports) the printing time and open
time of the concrete

materials.

» The monitoring itself is
not complex, however, the
o ) i real-time analysis,
Monitoring and feedback system * Non * Medium/High )
feedback and adjustment
can significantly increase

the complexity

Low, when the system is a passive system; medium, when the system is automated but independent of the printing
path and programming; high, when the system needs to be integrated and programed with the printing path
definition to perform its intended task; high *, when the system could be coupled with the printing path to achieve

functional-graded materials.
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