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Anthocyanidins are colored molecules having medium-size and belonging to the class of flavonoids.
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| 1. Anthocyanidins and Anthocyanins
1.1. Chemical Structures and Classification

Anthocyanidins are colored molecules having medium-size and belonging to the class of flavonoids . Actually, 25
different anthocyanidins are known (Eigure 1), that differ from each other for the presence of hydroxyl (-OH) and
methoxy (~OCHs) groups bound at the scaffold core (Figure 1) [&. Consequently, anthocyanidins are grouped into
3-hydroxyanthocyanidins, 3-deoxyanthocyanidins, and O-methylated anthocyanidins. Cyanidin (Cy), Delphinidin
(Dp), Pelargonidin (Pg), three among the non-methylated anthocyanidins, are the most common in nature. In
particular, it was estimated that 50% of plants producing anthocyanidins have Cy, 12% have Dp, and 10% have Pg
B4l peonidin (Pn), Malvidin (Mv), and Petunidin (Pt), belonging to the methylated anthocyanidins, can be also

easily found in plants B4,
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. Substitution pattem
Name Abbreviations R1 R2 R3 £ RS - g
Apigeninidin Ap H OH H OH H OH H
Aurrabidin Ab H H OH OH H OH  OMe
Aurantinidin Au OH OH OH OH H OH H
Capensinidin Cp OH OMe H OH OMe OH OMe
Carajurin Cj H H OH OH H Ome OMe
Cyanidin Cy OH OH H OH OH OH H
Delphinidin Dp oH OH H OH OH OH OH
Europinidin Eu OH  OMe H OH OMe OH OH
Hirsutidin Hs OH OH H OMe OmMe OH OMe
30-Hy droxyab 3'OHAbL H H OH OH OH OH  OMe
&-HydroxyCy  GOHCy OH OH ©4 OH OH ©OH OH
G-HydroxyDp 60OHDp OH OH ©OH ©OH OH OH OH
&-HydroxyPg 60HPg OH OH ©OH OH H OH H
Lutenlin Lt H OH H OH OH OH H
Malvidin M OH OH H OH OMe OH OMe
S-MethylCy S-MCy OH OMe H OH OH OH H
Pelargonidin Pg O OH H OH H OH H
Peanidin Pn OH OH H OH OMe OH H
Petunidin Pt OH OH H OH OMe OH OH
Pullc hellidin Pl OH  OMe H OH OH 0OH OH
Riccionidin-A RiA OH H OH OH H OH H
Rasinidin Bs OH OH H OMe OMe OH H
Tricetinidin Tr H OH H OH OH 0OH 0OH
Rosinidin Rs OH OH H OMe OMe OH H
Tricetinidin Tr H OH H OH OH OH OH

Figure 1. Chemical scaffold of anthocyanin compounds and their relative substituents. In the table, the most

common anthocyanidins are reported in bold.

In most of the cases, anthocyanidins are bounded with sugar moieties, forming the corresponding anthocyanins.
Glycosylation is achieved enzymatically following the adding of the sugar portion at the 3rd and/or 5th position (Rq
and/or R, subsistent of the chemical structure displayed in Figure 1 of the scaffold Rl As a consequence of the
glycosylation, anthocyanins have an increased water solubility and stability with respect to the related
anthocyanidins €. Despite the most common glycosylation process involves the condensation of monosaccharides
such as glucose, galactose, rhamnose, arabinose, rutinose and xylose, also disaccharides and trisaccharides may
be attached in some cases @. Finally, anthocyanins may be also often acylated with organic acids such as p-
coumaric, caffeic, and ferulic acids via ester bonds usually to the 3-position of the sugar moiety L&l Consequently,
to date more than 500 different anthocyanins that differ not only for the glycosylation pattern of the scaffold, but
also for the presence and position of aliphatic or aromatic carboxylates are reported. In spite of their great structure
variability, the anthocyanins most distributed in plants are those originated by Cy, Dp, and Pg. They are present in
80% of the leaves, 69% of the fruits, and 50% of the colored flowers BB On the other hand, anthocyanins
formed by Pt, Mv, and Pn, are limitedly distributed [AEI48I9][10]
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The conjugated bonds in the chemical scaffold are one of the responsible factors for the light absorption at about
500 nm Bl However, also the type of substituents present in the benzyl ring, local pH, state of aggregation and
complexation with other inorganic and organic molecules may contribute to color variation. In particular, it has been

observed that anthocyanins may display almost the chromatic scale BI[11]112]

| 2. Biosynthesis

Anthocyanidins and anthocyanins are almost exclusively produced by plants, in a branch of the phenylpropanoid
pathway that is also involved in the biosynthesis of other flavonoids 13114] (Figure 2). The enzymes involved in
biosynthesis of anthocyanidins are localized in the endoplasmic reticulum, organized into a multi-enzyme complex
named flavonoid metabolon L8Il14] The precursor for the synthesis of all flavonoids is the phenylalanine. This
amino acid marks the branch point of primary and secondary metabolism from which the phenyl-propanoid
pathway can lead to the synthesis of all phenolic compounds 22l As first step of the pathway, phenylalanine is
converted by phenylalanine ammonia-lyase (PAL) in cinnamic acid, which is then further transformed into coumaric
acid by the action of cinnamic acid 4-hydroxylase (C4H). Following the activation catalyzed by the 4-coumarate-
CoA ligase (4CL), 4-coumaryl-CoA reacts with three molecules of malonyl-CoA in a reaction catalyzed by chalcone
synthase (CHS). This reaction allows the formation of 4-hydroxychalcone (ex. naringenin chalcone) and it marks
the start of the flavonoid biosynthetic pathway. The 4-hydroxychalcone is transformed into the respective
7,3',5' trihydroxyl-flavone (ex. naringenin) by the action of chalcone isomerase (CHI). Afterwards, flavanone 3-
hydroxylase (F3H) oxidizes 7,35 trinydroxyl-flavone into flavonol-form (ex. dihydrokaempferol). Then,
dihydrokaempferol is transformed into dihydromyricetin or dihydroquercetin by the action of flavonoid 3'-
hydroxylase (F3'H) or flavonoid 3',5'-hydroxylase (F3'5'H), respectively. In order to convert the three hydroflavonols
into anthocyanidins, the combined action of dihydroflavonol-4-reductase (DFR) and anthocyanidin synthase (ANS)
is required. The first enzyme yields to the formation of the leucoanthocyanidins, meanwhile the second one
catalyzes the 2-oxoglutaratedependent oxidation of each leucoanthocyanidin into 2-flavan-3,4-diol. These latter

compounds spontaneously evolve to the respective anthocyanidins 131261,
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Figure 2. Biochemical pathway for the synthesis of anthocyanidins. PAL: phenylalanine ammonia-lyase; C4H:
cinnamic acid 4-hydroxylase; 4CL: 4-coumarate-CoA ligase; CHS: chalcone synthase; CHI: chalcone isomerase;
F3H: flavanone 3-hydroxylase; F3'H: flavonoid 3'-hydroxylase; F3'5'H: flavonoid 3',5'-hydroxylase; DFR:
dihydroflavonol reductase; ANS: anthocyanidin synthase (ANS).

After their synthesis, anthocyanins are transported to the plant vacuole through vesicle trafficking pathway that may
involve, or not, Golgi apparatus 4. In vacuole, anthocyanidins are converted into the more stable form by the
action of UDP-glucose flavonoid 3-O-glucosyltransferase (UF3GT) or UDP-glucose flavonoid 5-O-
glucosyltransferase (UF5GT). These two enzymes add a sugar moiety respectively at the 3rd and/or 5th position
(R, and/or R, subsistent of the chemical structure displayed in Figure 1 of the chemical scaffold RIS Finally, the
glucoside form of anthocyanidins may be further modified in many species by glycosylation, methylation, acylation,

or condensation with other organic molecules 151161,

| 3. Role in Plants

Anthocyanins are one of the major groups of natural pigments and they are responsible for colors of many leaves,

flowers, and fruits [2&. In the past the physiological role of anthocyanins in plants was exclusively ascribed to
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improve the reproductive success by facilitating communication between plants and pollinators or seed-dispersers
(291 On the other hand, in order to justify the occurrence of anthocyanins also in plant districts different from flowers
and fruits, it was mistakenly assumed that they could be an incidental consequence of the flavonoid pathway 29,
Indeed, the intermediate compounds dihydrokaempferol, dihymyricetin, and dihyquercetin may alternatively be
oxidized into respective flavon-3-ols by flavonol synthase (FLS) as well as used for the production of anthocyanins
(Eigure 3) BIE However, it was shown that some parts of the plants devoid of immediate signaling function
contained a considerable amount of these flavonoids Bl[21[22l On the other hand, anthocyanins have specific

histological localization, and their accumulation patterns do not match those of other pigments 21123,
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Figure 3. Alternative biochemical pathway to anthocyanin synthesis. FLS: flavonoid synthase; F3'H: flavonoid 3'-
hydroxylase; F3'5'H: flavonoid 3',5'-hydroxylase; DFR: dihydroflavonol reductase; ANS: anthocyanidin synthase
(ANS).

For these reasons, recently, anthocyanin role in plants was questioned. To date, it is well-known that these
molecules are involved in several defensive processes, including the screen role against UV-B [241251[26]27][28] gnq
plant protection against high light intensities (2212811291 However, light stresses are not the only abiotic stress in
which anthocyanins seem to play a key role. Indeed, thanks to their high antioxidant capacity, these flavonoids are
involved in all those responses that contrast oxidative stress induced by heat conditions BYEl and water and
nutrient deficit Y3233 Moreover, anthocyanins are also involved in response to biotic stresses, such as
mechanical damage due to herbivore attack [34/23138] insect infestation or fungal infection BZIE28I39 Taple 1 reports

the main abiotic and biotic stress conditions in which variations of the total content of anthocyanins were observed.

Table 1. Documented plant responses to abiotic and biotic stresses that involves anthocyanins.
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Condition Specie References
Abiotic Ipomoea batatas [22][40][41]
Stress

Daucus carota [42]
Rosa hybrida [43]
Solanum melongena [44][45][460(47]
Saccharum officinarum [48][49]
Camellia sinensis (501
Heat
Stress [51]
Sorghum vulgare
Vitis vinifera (52]
Oryza glaberrima (53]
Actinidia deliciosa (54]
Arabidopsis thaliana [55]
Quercus suber [56]
Solanum melongena [57][58][59]
Phalaenopsis aphrodite [69)
Silene littorea [24]
[26][61][62][63]
Arabidopsis thaliana [64]
Chrysanthemum [65]
Light morifolium
Stress Begonia semperflorens [66]
Brassica campestris [67]
Perilla frutescens [68I[69]
Lonicera japonica [70]
Actinidia deliciosa [54]
Malus domestica (291[71]
Water Camellia sinensis [z2]
Stress
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Condition Specie References
Vitis vinifera e
Hibiscus sabdariffa [z4]
Malus domestica 23]
Fragaria ananassa L6l
Ocimum basilicum 23l
Sorghum vulgare 7]
Oryza sativa (28]
Punica granatum 321
Arabidopsis thaliana [Z9)B0IiE1]
Nicotiana tabaccum (2]
Hibiscus rosasinensis (3]
Salt
Stress o . [84]
Fragaria chiloensis
Oryza sativa (88
Solanum tuberosum (86
Arabidopsis thaliana [341i25]361(87]
Gossypium arboreum [88]
Solanum tuberosum (691
Insect
Attack
tac Sorghum halepense 0]
Bioti .
lotie Fragaria ananassa (241
Stress
Vaccinium myrtillus (92]
Arabidopsis thaliana (391[93](94]
Fungi : [z8][85]
Attack Oryza sativa
Fragaria ananassa [38]{95](96]

Beyond the involvement of anthocyanins to contrast the oxidative stress conditions related to abiotic and biotic
menaces, anthocyanins seem to be also able to contribute to the physiological processes during non-stress

conditions, such as the elevation of leaf temperature [m][ﬂ]; transport of nutrients and monosaccharides @]@]m;
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and regulation of osmotic balance BYB4 Table 2 reports the main plant physiological pathways in which

anthocyanins are involved.

Table 2. Documented plant physiological processes in which anthocyanins are involved.

Plant Physiological Role

Specie

References

Elevation of Leaf Temperature

Several species
Lactuca sativa
Arabidopsis thaliana

Galax urceolata

100][101][102][103][104][105
106
107][108

109

Senescence

Several species
Populus euramericana
Arabidopsis thaliana
Brassica oleracea
Actinidia deliciosa

Torenia fournieri

110][111][112][113

114

Transportation of Monosaccharides

Several Species
Zea mays

Vitis vinifera

[98][99][100]

120][121

122][123][124

Regulation of Osmotic Balance

Several species
Xerophyta viscosa
Vitis vinifera
Fragaria ananassa
Populus deltoides
Arabidopsis thaliana

Craterostigma wilmsii

104][125][126

127

128][129][130

131

132

[55][108]

127

Camouflage

Several Species

Theobroma cacao

102][133][134][135][136][137][138][139

100
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Plant Physiological Role Specie References
Mangifera indica [100]
Several Species [105][134][140][141][142]
Theobroma cacao [100]
Enhancing of Light Absorption
Zea mays [143]
Mangifera indica [100]

4. Distribution in Edible Sources and Contribution in Human
Diet

Fruits and vegetables are the only edible sources from which it is possible assuming anthocyanin compounds (4]
[144] Although among the fruits the anthocyanin content is very variable, generally the level of anthocyanins in fruits
is much higher than in vegetables [145] The lowest anthocyanin content per 100 g of fresh weight was recorded for
grapefruit 248047 qate (1481 anq fig 222 meanwhile some berries, such as cranberry [, chokeberry 159
huckleberry 253 plueberry 252 raspberry 18811541 anq pilberry 2581156 shows the highest one. Concerning
vegetables, the most reach in anthocyanidins and anthocyanins are red cabbage [157][158][159] purple cabbage [160]
and purple potato A6 However, total anthocyanin content in fruits and vegetables considerably varies among
the different genera and cultivars, and it is strongly affected by different light, temperature, and agronomic factors
[162] Figure 4 shows the cluster distribution of anthocyanins in plant kingdom according to the anthocyanin content
reported in Phenol-Explorer Online Database 162116411651 Eor this analysis, Euclidean distances were calculated

by using the average linkage method.
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Figure 4. Cluster distribution of anthocyanins in plant kingdom based on the total anthocyanin content according to
Phenol-Explorer Database [163I[164I165] Eclidean distances were calculated with average linkage method.
Statistical analysis and graphical representation were made using SPSS v. 24 software. The cluster was generated
by using SPSS ver.24 statistical software.

In the recent years, some flowers were proposed as alternative edible sources of phytochemicals. In order to be
included in human diet, flowers have to be non-toxic and innocuous 1882671 |ndeed, flowers may contain toxic
substances, including hemaglutinnins, oxalic acid, cyanogenic glycosides, or alkaloids and cause severe damage
to the consumers 1881, However, many flowers can be considered safe, and therefore can be consumed as food.
Although flowers are little known as edible sources, they have been used for over 500 years in Europe and China
as herbal medicine 1681 Actually, they are mainly used for enhancing the aesthetic value of foods, as evidenced by
the increasing number of edible flower cookbooks, culinary magazine articles, and dedicated television segments
[169][170] ' pespite edible flowers are still considered a niche product, they are gaining attention due to their exotic
aroma and textures, delicate flavor, attractive color and phytochemical composition 271, In particular, edible flowers
are a potential source of several bioactive compounds, including anthocyanins RZI7LL72] Among them, begonia

(Begonia tuberhybride), tagete (Tagetes patula), mini rose (Rosa chinensis), mini daisy (Bellis annua), litoria
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(Clitoria ternatea), cosmos (Cosmos sulphureus), and cravine (Dianthus chinensis) are the most known and
commercialized 174,

Apart from their origins and physiological roles in plants, anthocyanidins and anthocyanins seem to play important
roles in human health and well-being [BI158] |ndeed, their intaking through the consumption of foods rich in these
flavonoid compounds seems to be linked to an improvement of the redox balance thanks to their high scavenging
and reducing activities 1621731 On the other hand, interesting properties, such as antitumor, antiatherogenic,
antiviral, and anti-inflammatory effects, decrease of capillary permeability and fragility, inhibition of platelet
aggregation and immune stimulation were reported 2741, The positive effects ascribed to the consumption of fruits
and vegetables rich in anthocyanidins and anthocyanins are not limited to the gastro-intestinal tract. Indeed,
anthocyanins resisting to gastric digestion may be absorbed in the stomach via bilitranslocase-mediated

mechanism LRIL7EIATTIA78] o jn the intestine through a mechanism involving the sodium—glucose co-transporter
as suggested for other flavonoids LZ6I[177][178[179][180]
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