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Identifying the factors that control the dynamics of pedestrians is a crucial step toward modeling and building various

pedestrian-oriented simulation systems. Several approaches have been proposed by researchers to predict pedestrians’

movement characteristics using different methods and techniques. Based solely on experimental evidence, researchers

isolate the factors that influence the interactions between pedestrians in single-file movement. With artificial neural

networks, one can approximate the fitting function that describes pedestrians’ movement without having modeling bias.

The analysis is focused on the distances and range of interactions across neighboring pedestrians.
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1. Introduction

For the sake of safe mass events, comfortable and efficient transport infrastructures, for example, airports, much work is

dedicated to understanding the laws governing crowd dynamics. In recent years, the number of empirical studies

increased significantly, which led to more insights into the movement of people. Additionally, these insights often offer

useful criteria that validate models and evaluate the simulacrum of reality they create.

Trustworthy models are valuable tools that shed light on unknown aspects of crowds and allow for assessing and

investigating new design and planning measures. There are several approaches to model pedestrian dynamics, as will be

discussed in the following sections.

The focus here is to apply feed-forward neural networks (FFNN) to investigate and empirically analyze the impact of

distance interaction range on the dynamics of pedestrians without modeling bias. Unlike most current research, the aim is

to analyze single-file movement in different homogeneous and heterogeneous gender flows to predict the pedestrian’s

speed. Figure 1 below shows the methodology followed in developing the algorithms for speed prediction using FFNN.

Figure 1. The methodology followed in developing the algorithms for speed prediction. In the pre-processing step,

researchers change the categorical to numerical values and normalize the data between [0, 1] to have the same scale of

values (an important step before training for artificial neural networks).

2. Approaches to Model Pedestrian Dynamics

2.1. Physics-based approaches

More attention has been given to studying the influential factors that control the dynamics of pedestrians in closed and

open environments . Understanding such factors can help in modeling complex pedestrian movement. When

dealing with complex systems, such as pedestrian dynamics, scientists generate numerous models based on different
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approaches, variables, and parameters . For instance, force-based models (see   for a review) assume that

pedestrians’ deviation from their intended trajectories can be explained by external forces. Another ansatz by Karamouzas

et al.   follows a statistical–mechanical approach to measure the interaction energy between pedestrians based on the

time to a potential future collision (time-to-collision). Tordeux et al.   introduce the walking time-gap as a parameter to

model pedestrian movement. Van den Berg et al.  propose a model based on optimal collision-avoidance techniques to

describe the movement of pedestrians in two-dimensional space. Another model, the Linear Trajectory Avoidance (LTA)

model, introduced by Pellegrini et al. , takes into account both simple scene information in the form of destinations or

desired directions and interactions between different pedestrians. Cellular automaton model proposed by Schadschneider

et al.   is inspired by the chemotaxis process, which ants use for communication. This discrete on-space model

assumes that pedestrian transition to neighbor cell probability varies dynamically and is not constant. Thus, this model

modifies the transition probabilities by considering the nearest-neighbor interactions to determine pedestrians’ transition to

the next state.

2.2 Data-based approaches

Recently, many researchers have proposed human trajectory prediction algorithms , arguing that neural networks have

high flexibility and are devoid of any modeling bias. For example, Alahi et al.    develop the Social LSTM (S-LSTM)

algorithm to predict the future trajectories of pedestrians depending on their past positions and the interactions with their

neighbors. To model the social interaction, Alahi uses a social-pooling layer to allow sharing of each neighboring

pedestrian’s LSTM hidden state to predict the subject pedestrian’s future positions. The Alahi et al. algorithm improved the

prediction of the next position by approximately 21% compared to the force-based model (SF) . Xue et al. 

developed a trajectory-prediction algorithm, called the Bi-prediction algorithm, based on the S-LSTM and considering the

importance of pedestrians’ intended destinations in predicting their future trajectories. This two-stage prediction model

employs bidirectional LSTM architecture to forecast multiple possible trajectories with different probabilities in the scene.

In other research , the authors propose the MX-LSTM model, which adds to the previous models a new variable

(direction of the pedestrian head) to improve the trajectory predictions (the model improves the prediction by

approximately 19% compared to the SF classical model). All the aforementioned data-based approaches have been used

to describe low-density situations using specific datasets (UCY , ETH , etc.) where social interaction techniques for

collision avoidance take up to several meters.

A study proposed by Tordeux et al.  applies feed-forward neural networks (FFNN) to predict the speed of pedestrians

walking on different types of facilities (corridors and bottlenecks). Several FFNNs are presented to approximate the fitting

function with different input features (relative positions, relative velocities, and mean distance to the nearest ten neighbors

in front), hidden layers, and hidden neurons. The results of FFNN show an improvement of 20% compared to the classical

approach (Weidmann fitting model ) evaluated with mixed data (corridor and bottleneck). In another study by Tkachuk

et al. , the authors develop a system that simulates pedestrians’ behavior during the evacuation process. The proposed

system uses FFNN to predict how people act during evacuations. The acceleration and average velocity are used to

predict each pedestrian’s horizontal and vertical speeds. Another study by Yi Ma et al.  proposes an approach based on

a multilayer perceptron artificial neural network for simulating pedestrians’ behavior. The authors train the artificial neural

network using pedestrians’ actual movement data to encapsulate and predict their future behaviors. To verify the

correctness of the proposed simulation system, the authors compared the simulation results of pedestrian counter-flow in

a road-crossing situation and pedestrian collision avoidance with the actual experiments. The simulation results in both

studies show that the proposed models based on artificial neural networks provide greater prediction accuracy by learning

from actual experimental data rather than other models.

3. Single-file Movement Experiments

Single-file movement experiments are a simple setup that allows easily controlling of the influential factors to investigate

pedestrian movement. Figure 2 below illustrates single-file experiments performed at the Arab American University in

Palestine :
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Figure 2. Snapshots from Palestine experiments. Left: UM experiment,N=20. Right: UX experiment, N=24.

4. Results and Analysis

The research aims to investigate the influence of the follower, predecessor, and second predecessor pedestrians’

headway distances on the speed behavior of a pedestrian. The investigation examines the isotropic nature of the

interaction behavior, considering that a pedestrian interacts not only with pedestrians in their field of vision to regulate the

speed but also with the pedestrians behind.

Interestingly, in Figure 3 readers can see that the combination of distance with the pedestrian in front and right behind

improves the speed prediction compared to the combination of headway distances in front. From observing experiments’

videos, one can notice that the pedestrians in relatively high densities start to adjust their speed when they approach the

nearest neighbors to avoid colliding.  This result demonstrates that the interaction behavior is not strictly anisotropic in

single-file movement, contrary to classical modeling approaches assuming that the front distances only influence the

speed.

Figure 3. Boxplots represent the training MSE results of the algorithms using UX, N=20, 24, 30 samples with complexity

(3,2). The x-axis represents the algorithm inputs applied, and the y-axis denotes the relative MSE calculated with D-input

algorithms as a reference case.
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