Endogenous Opioids and Stem Cells

Subjects: Cell Biology

Contributor: Giovannamaria Petrocelli , Luca Pampanella , Provvidenza M. Abruzzo , Carlo Ventura , Silvia Canaider , Federica Facchin

Opioids are considered the oldest drugs known by humans and have been used for sedation and pain relief for several centuries. Nowadays, endogenous opioid peptides are divided into four families: enkephalins, dynorphins, endorphins, and nociceptin/orphanin FQ. They exert their action through the opioid receptors (ORs), transmembrane proteins belonging to the su-per-family of G-protein-coupled receptors, and are expressed throughout the body; the receptors are the δ opioid receptor (DOR), μ opioid receptor (MOR), κ opioid receptor (KOR), and nociceptin/orphanin FQ receptor (NOP). Endogenous opioids are mainly studied in the central nervous system (CNS), but their role has been investigated in other organs, both in physiological and in pathological conditions. Here, it is presented a revision of their role in stem cell (SC) biology, since these cells are a subject of great scientific interest due to their peculiar features and their involvement in cell-based therapies in regenerative medicine. In particular, it will be focused on the endogenous opioids' ability to modulate SC proliferation, stress response (to oxidative stress, starvation, or damage following ischemia–reperfusion), and differentiation towards different lineages, such as neuro-genesis, vasculogenesis, and cardiogenesis.

endogenous opioid peptides opioid receptors stem cells differentiation stress response

proliferation

1. Introduction

Opioids are considered the oldest drugs known by humans and have been used for pain relief and sedation for several centuries. They are a class of compounds related in structure to the natural plant alkaloids which are extracted from the resin of the poppy plant (Papaver somniferum) ^[1]. Among them, morphine is the most common, active compound, which exerts its action in the central and peripheral nervous systems (CNS and PNS, respectively) through binding to the opioid receptors (ORs) ^[2].

Nowadays, endogenous opioid peptides are divided into four families: enkephalins, dynorphins, endorphins, and nociceptin/orphanin FQ ^[3]. From a molecular point of view, each opioid peptide is synthesized as a prepro and a proform, creating functional peptides after precursor processing. All peptides share a common aminoterminal sequence, Tyr-Gly-Gly-Phe-(Met/Leu), namely, the opioid motif. For this reason, the same precursor may result in different opioid peptides (**Figure 1**) ^{[4][5]}.

Figure 1. Schematic representation of human endogenous opioid families and their main functional peptides after precursor processing. For each family of peptides, the following information is reported: (i) the names of the genes (*PENK*, *PDYN*, *POMC*, and *PNOC*); (ii) the amino acid sequence of the preforms (NCBI Reference Sequence is reported in brackets next to the proform names); (iii) on the right, the names of the main functional peptides highlighted with a corresponding colour in the preform peptide sequence and in the isolated peptide sequence when it is required.

Endogenous opioid peptides (and exogenous opioids) exert their action through the opioid receptors. ORs are transmembrane proteins belonging to the super-family of G-protein-coupled receptors (GPCRs), which are widely studied due to their key role in mood disorders, drug abuse/addiction, and pain management ^{[6][7][8]}. They are expressed not only in the CNS but also in many other districts. There are four subtypes of OR: δ opioid receptor (DOR), μ opioid receptor (MOR), κ opioid receptor (KOR), and nociception/orphanin FQ (NOP) receptor.

Here it will be presented the effect od endogenous opioids on stem cells. Among all the cell types forming the body's tissues, stem cells (SCs) are the subject of great scientific interest due to their peculiar features. In fact, they are characterized by two important properties: the ability to self-renew and the ability to differentiate into different cell types. Although the mechanisms orchestrating the biology of SCs are not completely understood, it is suggested that their fate strongly depends on the interactions with their microenvironment, called the niche. Increasing evidence states that the niche, consisting of other non-SCs, the extracellular matrix, and signaling factors, in combination with the intrinsic characteristics of SCs, consistently defines their properties and potential. Within this frame, SCs represent a particularly attractive tool for therapeutic applications and regenerative medicine.

2. Endogenous Opioids Modulate Stem Cell Proliferation and Cell Stress Response

The opportunity to modulate SC proliferation and stress response represents one of the main goals of biological SC research aimed at improving the efficiency of SC transplantation. The following Table shows the major outcomes of studies committed to evaluating the role of endogenous opioid peptides on these SC features (**Table 1**)

Table 1. Effects of endogenous opioids on stem cell proliferation and stress response.

Opioids/Agonists Pre- Treatment	Antagonist	Opioid SReceptor	Cell Type	Biological Effects	Ref.
Met-enkephalin Morphine (10 ⁻⁶ M)	Naloxone (3 × 10 ⁻⁶ M)	DOR MOR	NPCs (from EGL of postnatal 5- and 6-day- old mice)	Morphine significantly reduced DNA content; this effect was attenuated by naloxone co- administration. Met-enkephalin did not	9

Opioids/Agonists	Pre- Treatment	Antagonists	Opioid Receptor	Cell Type	Biological Effects	Ref.
			-		alter DNA synthesis. Opioids did not affect cell viability.	
Met-enkephalin (10 ⁻⁶ or 10 ⁻⁵ M)			MOR	hCB- CD34 ⁺ and hPB- CD34 ⁺ cells	hCB-CD34 ⁺ expressed MOR more than hPB- CD34 ⁺ cells. In treated hCB- CD34 ⁺ cells, phospho- MAPK was increased by 4.7- to 6.1-fold compared to the untreated cells; the increase of phospho-p38 was moderate. In hCB-CD34 ⁺ , met- enkephalin did not reducethe apoptosis induced by irradiation.	[10]
Dynorphin-A[1– 17] Dynorphin-A[2– 17] U50,488 (10 ⁻¹⁴ to 10 ⁻⁸ M)		Nor-BNI (10 ⁻⁶ M)	KOR	NPCs (from 7- to 9- week-old human fetal brain tissue)	Dynorphin-A[1–17] and U50,488 stimulated cell proliferation and migration in a dose- dependent manner.	[<u>11</u>]
Morphine			MOR	NSCs	Theoretical hypothesis: since morphine reduces testosterone levels, increases DHT levels, andover- expresses <i>p53</i> gene, it might prevent NSC proliferation.	[<u>12</u>]
Morphine sulfate (10 ⁻⁶ to 1.3 × 10 ⁻⁵ M)		Naloxone	MOR	NPCs (from 14-day- oldmouse embryos)	Morphine decreased proliferation of NPCs and induced the caspase-3 activity in a dose-dependent manner. Morphine induced neuronal differentiation of NPCs.	[<u>13]</u>
Nociceptin			NOP	Mouse SSCs and spermatocytes	Nociceptin is an upstream Sertoli cell transcription factor	[<u>14]</u>

Opioids/Agonists	Pre- Treatment	Antagonists	Opioid Receptor	Cell Type	Biological Effects	Ref.
					that regulates SSC self- renewal and spermatocyte meiosis.	
Morphine (10 ⁻⁴ M)		Naloxone (5 × 10 ⁻⁵ M)	MOR	Rat NSCs	Morphine decreased NSC growth and increased apoptosis. Morphine reduced the secretion of insulin and insulin-like growth factors and downregulated insulin receptor expression.	[<u>15]</u>
DADLE (10 ⁻⁷ M)	Serum deprivation	Naltrindole	DOR	hUCB-MSCs	DADLE increased anti- apoptotic Bcl-2, decreased pro-apoptotic Bax/Bad, decreased the activated caspase-3, upregulated PI3K subunit p110γ, and activated Akt. DADLE upregulated the release of anti- inflammatory cytokines (IL-4, IL-10, and TGF-β) and downregulated the secretion of pro- inflammatory cytokines (TNF-α, IL-6, and IL-1).	[16]
DADLE (10 ⁻⁷ M)	H ₂ O ₂ (6 × 10 ⁻⁴ M)		DOR	hUCB-MSCs	DADLE increased cell viability, upregulated the anti- apoptotic protein Bcl- 2,and suppressed the pro-apoptotic proteins Bax/Bad. DADLE reduced intracellular ROS levels and AP sites. DADLE downregulated UPR genes: <i>IRE-</i> <i>1α</i> , <i>BiP</i> , <i>PERK</i> , <i>ATF-4</i> , and <i>CHOP</i> .	[<u>17]</u>

γ, interieron gamma; iட-±β, interieukin ± beta.

2. Endogenous Opioids modulate Stem Cell Differentiation

The ability to differentiate is one of the most important properties of SCs. The following Table summarizes the results obtained from the studies demonstrating the involvement of endogenous or synthetic opioids in SC commitment and/or differentiation, in particolar neural, hematopoietic, vascular and cardiac stem cell differentiation (**Table 2**).

Table 1. Effects of endogenous opioids on stem cell proliferation and stress response.

Opioids/Agonist	s Pre-Treatment Anta	Opioid gonistsReceptor	Cell Type	Biological Effects	Ref.
		Neural Differentia	ation		
DAMGO U69,593 (10 ⁻⁷ –10 ⁻⁶ M)	RA neuralinduction	KOR-1 MOR-1	ESCs (from mouse blastocyst) ESCs (from ICM of 3.5- day-old mouse)	MOR-1 and KOR-1 were expressed in undifferentiated ESCs and in RA-induced ESC-derived NPCs. Both opioids induced ESC neuronal	[<u>19</u>]

Opioids/Agonists	Pre-Treatment A	Antagonists _F	Opioid Receptor	Cell Type	Biological Effects	Ref.
					differentiation activating ERK pathway.	
DAMGO U69,593 (10 ⁻⁶ M)	RA neural induction		KOR MOR	ESCs (from mouse blastocyst)	Opioids reduced neurogenesis and astrogenesis in RA-induced ESC- NPCs through p38 MAPK and ERK pathways, respectively. Opioids stimulated oligodendrogenesis via both ERK and p38 signaling pathways.	[20]
DAMGO SNC80 U50,488H (10 ⁻⁷ –3 × 10 ⁻⁵ M)			DOR KOR MOR	MEB5 (from 14.5-day- old mouse forebrains)	Only the DOR agonist SNC80 promoted neural differentiation.	[<u>21</u>]
	Neural induction			Human USSCs and BM- MSCs	Neural induction increased enkephalinergic markers (Ikaros, CREBZF, and PENK), especially in USSC-derived neuron-like cells. PDYN expression was enhanced in USSC-derived neuron-like cells.	[22]
Dynorphin-A U50,488H (10 ⁻⁶ M)	Neural induction with opioid/ agonist	Nor-BNI (10 ⁻⁵ M)	KOR	NSCs (from 8-week-old mouse hippocampus)	NSCs expressed high levels of KOR. Opioid treatment decreased neurogenesis by modulating Pax6/Neurog2/NeuroD1 activities via upregulation of miR- 7a expression. Opioid treatment did not alter astrogenesis and oligodendrogenesis. Opioid treatment did not	23

Opioids/Agonists	Pre-Treatment Ant	agonists Opioid Receptor	Cell Type	Biological Effects	Ref.
				affect proliferation and apoptosis.	
Morphine (10 ⁻⁵ M)	Neural induction with opioid		NSCs (from postnatal p0 mouse hippocampus)	Morphine promoted neurogenesis, increased apoptosis, and decreased total cell number during the later stages of differentiation. Morphine increased glutathione/glutathione disulfide ratio and decreased S- adenosylmethionine/S- adenosylhomocysteine ratio.	[<u>24]</u>
	Hemate	opoietic and Vascular	Differentiation		
Beta-endorphin (1 to 1000 ng/mL) Dynorphin (1 ng/mL) Leu-enkephalin Met-enkephalin (100 ng/mL)	EP (0.4 U/mL) induced erythropoiesis with opioid		Mouse BM progenitor cells	In the presence of EP, opioids enhanced BM progenitor differentiation into CFU- e.	[<u>25</u>]
TRK820 U50,488H (10 ⁻⁵ M)	Vascular induction	KOR	ESstA-ROSA (engineered mouse ESCs)	KOR agonists inhibited EC differentiation and 3D vascular formation in ESC-derived vascular progenitor cells. KOR agonists decreased the expression of Flk1 and NRP1 through inhibition of cAMP/PKA signaling in vascular progenitor cells.	[<u>26]</u>
Met-enkephalin (10 ⁻¹⁴ to 10 ⁻⁸ M)		KOR DOR	Mouse BM progenitor cells	Met-enk upregulated the expression of KOR and DOR in BM-derived DCs. Met-enk induced BM- derived DCs to differentiate mainly towards the mDC	[27]

Opioids/Agonists	Pre-Treatment Antag	Opioid Jonists Receptor	Cell Type	Biological Effects	Ref.
				subtype. Met-enk increased the expression of MHC class II molecules and the release of pro-inflammatory cytokines (IL-12p70, TNF-α).	
	Hematop	oietic and Vascular	Differentiation		
Morphine (10 ⁻⁴ M)	Nalo (10	oxone ⁻⁴ M)	Rat NSCs	Morphine reduced survival and clonogenicity, negatively affecting tubulogenesis properties of NSCs by the inhibition of neuro-angiogenesis trans-differentiation.	[28]
		Cardiac Differentia	tion		
Dynorphin-B (10 ⁻⁹ to 10 ⁻⁶ M)	DMSO 1%	KOR	Mouse ESCs	DMSO increased <i>PDYN</i> gene expression and dynorphin-B synthesis and secretion. Dynorphin-B elicited <i>GATA</i> - <i>4</i> and <i>Nkx-2.5</i> gene transcription and enhanced gene and protein expression of α- MHC and MLC-2V.	[<u>29]</u>
Dynorphin-B (10 ⁻⁸ to 10 ⁻⁶ M)	Cardiac induction	KOR	GTR1-ESCs (engineered mouse ESCs)	ESC plasma membranes and nuclei expressed KOR-specific opioid binding sites. ESC-derived cardiomyocytes showed an increase in dynorphin-B around the nucleus. Dynorphin-B induced an increase of <i>GATA-4</i> ,	(<u>30</u>) (<u>31</u>)

Opioids/Agonists	Pre-Treatment Ant	Opioid Receptor	Cell Type	Biological Effects	Ref.	
				<i>Nkx-2.5</i> , and <i>PDYN</i> gene expressions and promoted cardiogenesis by PKC signaling.		
	HBR cardiac induction	HBR cardiac induction		HBR-induced ESC- derived cardiomyocytes enhanced <i>GATA-4</i> , <i>Nkx-2.5</i> , and <i>PDYN</i> gene	[<u>32]</u>	
	(0.75 mg/mL)		mouse ESCs)	transcriptions and the intracellular level of dynorphin-B.		
	ELF-MF exposition during cardiac induction		GTR1-ESCs (engineered mouse ESCs)	ELF-MF spontaneously induced cardiogenesis, upregulating GATA-4, Nkx-2.5, and PDYN gene expression and enhancing	[<u>33]</u>	:133– .col.
	(50 Hz, 0.8 m Trms)			secretion of dynorphin- B.		e CNS: 20, 5–
		Cardiac Different	iation			
	REAC exposition during cardiac induction (MF of 2.4 and 5.5 GHz)		Mouse ESCs and human ASCs	Both SCs committed to cardiac lineage and exposed to REAC increased the expression of <i>GATA-</i> <i>4</i> , <i>Nkx-2.5</i> , and <i>PDYN</i> gene.	[<u>34]</u> [<u>35]</u>	Opioid 79. 3 in
Dynorphin-B (10 ⁻⁷ M)	Cardiac induction		CPCs (from 11.5-day- oldembryonic mouseventricles)	Dynorphin B promoted CPC differentiation into cardiomyocytes.	[<u>36]</u>	ction
Dynorphin-A Dynorphin-B Met-enkephalins Leu-enkephalins (10 ⁻⁵ M)	Cardiac induction	DOR KOR	Mouse ESCs	Both DOR and KOR increased during ESC differentiation. Dynorphin-B inhibited Oct-4 and increased Nkx- 2.5 gene expression. Dynorphin-A, met- enkephalins, and leu-	[<u>37</u>]	61. hibit 10 and 1281–

 Rozenfeld-Granot, G.; Toren, A.; Amariglio, N.; Nagler, A.; Rosenthal, E.; Biniaminov, M.; Brok-Simoni, F.; Rechavi, G. MAP kinase activation by mu opioid receptor in cord blood CD34(+)CD38(-) cells. Exp. Hematol. 2002, 30, 473–480.

¹ Opioids/Agonists Pre-Treatment Antagonists Receptor	ell Type Biolo	gical Effects	Ref. , P.K.
	enke a diff	phalinsdid not ffect ESC ferentiation.	р.
12. Shoae-Hassani, А.; Shani, S.; Tabalabaei, S.A.; verui	, J. Coula the enac	ogenous opioi	a, morphine,
DAMGO, [D-Ala2, MePhe4, Glyois]-enkephalin, U69, 593, N-F	es 2011 76 225 nethyl-2-phenyl-14-[(5	229 R,7S,8S)-7-(py	rrolidin-1-yl)-1-
13% anning der 5 10 e.c. 80 Milleger gesider und Aretia viel and . KORetskypt	vioio 31904121 411 i setonu	ekeM®RR1,Sh	opioid rieceptor
isofororphileSexpensionenicvotemanelles provinterano pellindestifi	evensation of progr	aitprogenitor	e Hestand Ilular
signabirautesedphinassis na muaekenaas.niiugsnartizaed	4pr9tein10300458; SI	NC80, [(+)-4-[(a	alphaR)-alpha-
((2S,5R)-4-allyl-2,5-dimethyl-1-piperazinyl)-3-methoxybenzyl]-N, 14. Chen, S.R.; Liu, Y.X. Regulation of spermatogonial ste U-50488 hydrochlo-ride; Nor-BNI, nor-binaltorphimine; DOR, & meiosis by Sertoli cell signaling. Reproduction 2015, 1 cells; USSCs, unrestricted somatic stem cells; BM-MSCs, bone	N-diethylbenzamide]; em cell self-renewa opioid receptor; MI L49, R159–R167. mar-row mesenchym	U50,488H, (–)- al and sperma ÈB5, multipoter al stem cells; Ik	trans-(1S,2S)- tocyte it neural stem aros, IKAROS
15an Syalario anglo, S.; CREBZE a CREBAAT Alikamfara Mcripholy a	zda nip e N,KK, azo mika	elyhalFreizydyw,	prodynorphin;
NS Bahbanghazim Relnapaatof parephice on Nerogaresio	geatrins, ulieure cepta	arlandaparteia	n leatiols o f leu-
enkiepsudin/,IGEarie-eakepsunal; stereaedphdNe,urosciorliete2k)epha666;0E12,4e7yt11,5e4	oietin; CFU-e,	colony-forming
unit-erythroid; 16. Reddy, L.V.K.; Sen, D. DADLE enhances viability and acrylamido]morphinan hydrochloride: EC, endothelial cell: Fik subjected to serum free apoptotic condition in part via neuropilin 1: cAMP_cyclic adenosine monophosphate; PKA, pro 2017, 191, 195–204.	lihydroxy-4,50-epoxy anti-Inflammatory 1 fetal liver kinase a the DOR/PI3K/A tein kinase A; DCs, o	-6 <u>β-IN-methyl-ti</u> effect of hum 1/VEGF_rece KT_pathway. I dendritic cells; r	ans-3-(3-furyl) an MSCS ptor 2: NRP1, life Sci. nDCs, myeloid
dendritic cells; MHC, major histocompatibility complex; TNF- 17et Mullick, Mint Vrenkatesh, 153, String Proteinagis, CANSO, UG Nkx2515, Ation 184906015, humanch UCRB-BEEN viability and bin HBR, PRyaSteman Crelkedesster 27, BAyr Carle retinoic acids; E	a, tumor necrosis fa hetayEshiroshalinga tegytongoislatingats ELF-MF, extremely lo	actor alpha; IL- (PAPE) Frans, Vire, top w frequency m	12p70, active linted rolon 4; lention as the, lention as the, lagnetic fields;
18EMGIIICRIQVELESTEIG. ASYMMETEDIEIGENEVENEN PEGEIGENEVENEN	the drasses thy mak	isterre 6elle is6	is, Natemckelle;
CPStressdiaediagediabooldatiedealogateriainding an average	in℃hiten14Stem Ce	lls in Part by	
Downregulating the Unfolded Protein Response and F	ROS along with En	hanced Anti-I	nflammatorv
3ff Conclusion. Rep. 2018, 14, 558–573.	5		,
19. Kim, E.; Clark, A.L.; Kiss, A.; Hahn, J.W.; Wesselschm Overall, opioidergic systems encompass a wide-ranging varie and kappa-opioids induce the differentiation of embry control of major determinants in cell and SC biology. Compoundi Chem. 2006, 281, 33749–33760. found to act as "one component–multiple target conductors", wh	nidt, R.; Coscia, C. ety of bioactive pep onic stem cells to r ng their biological co ich often led to the c	J.; Belcheva, tides, providing neural progen mplexity, opioid observation of o	M.M. Mu- multi-layered tors. J. Biol. peptides were pposite effects
20h Hahsande Vout dagwane, Spidifmation Readellen (Righted	erEizerskiythe Apel	lessets chimidi	to Rair (SOSADIA)
activity was hold and kappa opioids modulate	mouse embryonic	: stem cell-dei	rived neural
progenitor differentiation via MAP kinases. J. Neuroch	em. 2010, 112, 14	31–1441.	
Nevertheless, deciphering the complexity of the informationa 21. Narita, M.; Kuzumaki, N.; Miyatake, M.; Sato, F.; Wack responses may hold promise for intriguing future developments. opioid receptor function in neurogenesis and neuropro the timely and synergistic use of naturally occurring and syntheti 14505	I cues associated hi, H.; Seyama, Y.; These future perspe otection. J. Neuroc c opioids for the fine	with opioid pe Suzuki, T. Ro ctives involve th hem. 2006, 9 tuning of remar	otide-mediated ble of delta- ne potential for 7, 1494– kable develop-
ments in regenerative medicine, including differentiation, prolife	eration, multicellular	cross talk, infla	ammation, and
22sstuafizindvlejliBgkhshandeh, B.; Soleimani, M.; Atashi, A.	Exploring the enk	ephalinergic	
differentiation potential in adult stem cells for cell there	apy and drug scree	ening implicat	ions. Vitr.

Cell Dev. Biol. Anim. 2012, 48, 562-569.

- 23. Xu, C.; Fan, W.; Zhang, Y.; Loh, H.H.; Law, P.Y. Kappa opioid receptor controls neural stem cell differentiation via a miR-7a/Pax6 dependent pathway. Stem. Cells 2021, 39, 600–616.
- Trivedi, M.; Zhang, Y.; Lopez-Toledano, M.; Clarke, A.; Deth, R. Differential neurogenic effects of casein-derived opioid peptides on neuronal stem cells: Implications for redox-based epigenetic changes. J. Nutr. Biochem. 2016, 37, 39–46.
- 25. Skelly, R.R.; Fata, J.; Sharkis, S.J.; Sensenbrenner, L.; Ansari, A.A. Neuropeptide modulation of murine erythropoiesis. Ann. Clin. Lab. Sci. 1987, 17, 324–330.
- 26. Yamamizu, K.; Furuta, S.; Katayama, S.; Narita, M.; Kuzumaki, N.; Imai, S.; Nagase, H.; Suzuki, T.; Narita, M.; Yamashita, J.K. The κ opioid system regulates endothelial cell differentiation and pathfinding in vascular development. Blood 2011, 118, 775–785.
- 27. Liu, J.; Chen, W.; Meng, J.; Lu, C.; Wang, E.; Shan, F. Induction on differentiation and modulation of bone marrow progenitor of dendritic cell by methionine enkephalin (MENK). Cancer Immunol. Immunother. 2012, 61, 1699–1711.
- Abdyazdani, N.; Nourazarian, A.; Nozad Charoudeh, H.; Kazemi, M.; Feizy, N.; Akbarzade, M.; Mehdizadeh, A.; Rezaie, J.; Rahbarghazi, R. The role of morphine on rat neural stem cells viability, neuro-angiogenesis and neuro-steroidgenesis properties. Neurosci. Lett. 2017, 636, 205–212.
- 29. Ventura, C.; Maioli, M. Opioid peptide gene expression primes cardiogenesis in embryonal pluripotent stem cells. Circ. Res. 2000, 87, 189–194.
- 30. Ventura, C.; Zinellu, E.; Maninchedda, E.; Fadda, M.; Maioli, M. Protein kinase C signaling transduces endorphin-primed cardiogenesis in GTR1 embryonic stem cells. Circ Res. 2003, 92, 617–622.
- Ventura, C.; Zinellu, E.; Maninchedda, E.; Maioli, M. Dynorphin B is an agonist of nuclear opioid receptors coupling nuclear protein kinase C activation to the transcription of cardiogenic genes in GTR1 embryonic stem cells. Circ. Res. 2003, 92, 623–629.
- 32. Ventura, C.; Maioli, M.; Asara, Y.; Santoni, D.; Scarlata, I.; Cantoni, S.; Perbellini, A. Butyric and retinoic mixed ester of hyaluronan. A novel differentiating glycoconjugate affording a high throughput of cardiogenesis in embryonic stem cells. J. Biol. Chem. 2004, 279, 23574–23579.
- Ventura, C.; Maioli, M.; Asara, Y.; Santoni, D.; Mesirca, P.; Remondini, D.; Bersani, F. Turning on stem cell cardiogenesis with extremely low frequency magnetic fields. FASEB J. 2005, 19, 155– 157.
- Maioli, M.; Rinaldi, S.; Santaniello, S.; Castagna, A.; Pigliaru, G.; Gualini, S.; Fontani, V.; Ventura, C. Radiofrequency energy loop primes cardiac, neuronal, and skeletal muscle differentiation in mouse embryonic stem cells: A new tool for improving tissue regeneration. Cell Transplant. 2012, 21, 1225–1233.

- 35. Maioli, M.; Rinaldi, S.; Santaniello, S.; Castagna, A.; Pigliaru, G.; Delitala, A.; Bianchi, F.; Tremolada, C.; Fontani, V.; Ventura, C. Radioelectric asymmetric conveyed fields and human adipose-derived stem cells obtained with a nonenzymatic method and device: A novel approach to multipotency. Cell Transpl. 2014, 23, 1489–1500.
- 36. Feridooni, T.; Pasumarthi, K.B.S. Fractionation of embryonic cardiac progenitor cells and evaluation of their differentiation potential. Differentiation 2019, 105, 1489–1500.
- Šínová, R.; Kudová, J.; Nešporová, K.; Karel, S.; Šuláková, R.; Velebný, V.; Kubala, L. Opioid receptors and opioid peptides in the cardiomyogenesis of mouse embryonic stem cells. J. Cell Physiol. 2019, 234, 13209–13219.

Retrieved from https://encyclopedia.pub/entry/history/show/59204