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Electrical Source Imaging (ESI) is an imaging technique utilized to localize the activated brain regions by

incorporating temporal and spatial components from electroencephalogram (EEG) signals. 

EEG  source imaging  source localization  applications  challenges

1. Introduction

Electrical Source Imaging (ESI) is an imaging technique utilized to localize the activated brain regions by

incorporating temporal and spatial components from electroencephalogram (EEG) signals. Although this imaging

method provides fine temporal resolution compared to other imaging methods, such as the functional magnetic

resonance imaging (fMRI), the number of electrodes used to record the brain electrical potentials is significantly

smaller than the number of activated neurons, rendering EEG source localization an ill-posed problem. To

determine the generating source of the brain’s electrical activity, the scalp potentials (i.e., the potentials created by

the synchronous activation of pyramidal neurons in the brain , which are propagated through the different tissues

that compose the head) are recorded by an array of surface electrodes. Then, an estimation of the signals’ origin is

calculated through Poisson’s equation . Poisson’s equation is directly derived from Maxwell’s equations, given

that the head tissues have the permeability of free space, while the localization of the activated regions within the

brain is commonly referred to in the literature as the inverse problem. On the contrary, computing the scalp

potentials from a given source (a prerequisite to calculate inverse solutions) is designated as the EEG forward

problem. As such, given that Poisson’s equation highly depends on the accurate values of the electrical and

geometrical properties (thickness, conductivity, etc.) of the head tissues (scalp, skull, cerebrospinal fluid (CSF),

brain cavities, etc.), it is evident that a precise head model is critical to solve the forward problem correctly. To

address this, anatomical information can be provided by magnetic resonance imaging (MRI). Nevertheless, it is

extremely difficult to obtain head MRI in a subject-specific fashion. Thus, a large number of studies rely on

template anatomical information . Having a proper head model also facilitates the correct electrode

positioning, since the location of each electrode varies for each individual (although to a small degree). In this

context, the anatomical information as well as the corresponding electrode locations comprise the Leadfield matrix,

the accurate calculation of which is closely related to the accuracy of the solutions of the inverse problem . The

EEG source localization has puzzled researchers since a vast variety of combinations of sources can produce the

same signals recorded by the EEG . This is a fundamental problem of EEG source localization, because even

with a flawless head model and an excellent noiseless signal, the number of equations that can be solved is

minuscule compared to the number of dipoles (source points) within the brain, leading to non-unique possible

solutions. This non-uniqueness can be handled with mathematical, anatomical or neurophysical constraints about

[1]

[2]

[3][4][5]

[6]

[7]



Electrical Source Imaging | Encyclopedia.pub

https://encyclopedia.pub/entry/11888 2/10

the location and the direction of dipoles . Therefore, even if non-uniqueness is not guaranteed, these a priori

assumptions are utilized, in order to reduce the computational needs for the source estimation and increase the

accuracy of the solutions.

However, owing to recent advances which incorporate novel methodologies as well as the introduction of machine

learning approaches in solving the inverse problem , the required time and the computational resources for

the solution have been significantly reduced. Furthermore, sophisticated algorithms have diminished the

localization error efficiently, estimating the location and activation of the different cortical regions . This is evident

in several applications, ranging from detecting and assisting the therapy of epilepsy, to interpreting emotions from

facial expressions .

2. State-of-the-Art

In this paper, current ESI implementation approaches, trends and challenges are presented. The databases

examined for the synthesis of the studies presented were—PubMed, Scopus, ScienceDirect and Google Scholar.

Eligibility criteria included research works that incorporate recent advancements (published after 2015) regarding

forward and inverse solutions, clinical and cognitive applications and methodological/algorithmic aspects of source

imaging.

2.1. Forward Problem

To solve the EEG forward problem, three main configurations are required—(a) the head and source models (i.e.,

the location of the solution points in the brain), (b) the electrode alignment on the head model, and (c) the Leadfield

matrix using the channel locations in relation to the anatomical information of the head model. As such, the

solution’s accuracy highly depends on the efficient generation and composition of the above. The basic

components and the flow of processes are shown in Figure 1.

Figure 1. Information flow and basic components of the forward and inverse problems.

Regarding the creation of the head model, the integration of anatomical data has rendered earlier widely adopted

spherical head models outdated . Converting MRI images into head models is a time-consuming process with a
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high computational cost, and this procedure presents optimal results in terms of localization accuracy.

Nevertheless, subject-specific MRI recordings are not always available, requiring the head model to be constructed

through computational methods. In this regard, however, it is important to emphasize that the sophistication of the

head models does not display a linear trend with ESI localization, leading to high implementation complexity (e.g.,

inclusion of skull spongiosa) to demand significant computational resources, with little to no significant impact in

spatial accuracy .

The most common methods utilized for head-modeling are the boundary element methods (BEMs), finite difference

methods (FDMs) and the finite element methods (FEMs) . The Projective Method (PM) (that

incorporates the mathematical descriptors of surfaces, such as Fourier descriptors, and dimensionality reduction

methods, such as Principal Component Analysis), is also well established, albeit less common . Of note is

that for PM, in contrast with the aforementioned methods, the time required to extrude the head model and the

computational resources is drastically reduced, but with lower spatial resolution .

Regarding the frequently employed algorithms, FEM and FDM provide more analytical outcomes and can tackle

inhomogeneity problems, which is vital if the head model requires the modeling of anisotropic properties of white

matter and the skull. On the other hand, BEM presents lower computational time and accuracy in comparison to

the FEM and FDM, being unable to treat inhomogeneous and nonlinear problems.

Even though the FEM approach provides a more well-established detailed model, since it incorporates more than

the three standard head tissues, its universal implementation has been hamstrung due to its computational needs

and lack of open-source tools incorporating a complete FEM approach. However, the Fieldtrip–SimBio pipeline has

been recently introduced, providing an integrated EEG forward problem solution, while employing an FEM-created

head model . On this premise, it should also be noted that subject-specific MRIs are not always possible to be

recorded. For this reason, an averaged (standardized) volume conductor model using the ICBM 152 anatomical

template and the FEM (“The New York Head”) was created, showing promising results in ESI, compared to other

standardized FEM and BEM approaches . While FEM effectiveness is shown to be comparable with analytical

solutions , adverse issues could occur due to skull leakage effects (i.e., the inhomogeneity of skull thickness),

which could lead the implemented model to present similar properties to a simple three-layer sphere model . In

order to overcome this inconsistency, different FEM approaches are used, deviating from the standard continuous

Galerkin–FEM method (CG-FEM) by creating a mixed or discontinuous Galerkin–FEM utilizing the subtraction

approach . Evidence suggests that this solution combines the benefits from both approaches, decreasing the

skull leakage effect . Furthermore, using analytical expressions combined with the subtraction approach, the

accuracy of the forward problem solution was increased compared to other numerical approaches with similar

computational costs . Increments in the precision of the EEG forward problem results have also been

demonstrated by the incorporation of tissue inhomogeneity, even within the gray and white matter . Apart from

FEM, computationally efficient and accurate solutions have also been achieved with the introduction of anisotropic

conductivity equations and utilization of the reciprocity theorem  on FDM head models (AFDRM-NZ) . In this

regard, anisotropic conductivity values are integrated by employing a set of surface integral equations aligning the

produced solutions with the analytical results . Of note is that the skull conductivity and, therefore, the correct
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modeling is a pivotal point, which, due to head abnormalities or insufficient imaging tools, can be challenging to

approximate . To address this issue, Bayesian Approximation Error (BAE) approaches displayed high efficiency

in reducing the source localization error by several millimeters, enhancing spatial accuracy, which is crucial in

clinical applications .

2.2. Inverse Problem

Contrary to the forward problem, the inverse problem cannot be uniquely solved if there are no a priori restrictions

about the source locations . This fact has led researchers to incorporate various mathematical constraints

preceding the source estimation, thus reducing the number of possible solutions deriving from the recorded data.

Such constraints are the core of many of the conventional methods used to solve the inverse problem. The inverse

methods that are commonly used fall into two main categories—non-parametric (non- adaptive) and parametric

(adaptive) distributed source imaging.

Although there is an extremely large number of ESI methodologies for parametric (e.g., Beamformers, Multiple

Signal Classification) and non-parametric (e.g., Minimum Norm Estimate, Focal Underdetermined System Solution,

Local Auto-Regressive Average) distributed source imaging methods of the inverse solution, in this paper, we focus

on the most commonly employed algorithms, to highlight the progress of ESI. For an extensive review of the

mathematical aspects and properties of several of these conventional methods and their variants, that are beyond

the scope of this review paper, please refer to the thorough reviews .

The most frequent non-parametric algorithms employed are the minimum norm estimate (MNE) solution  and its

depth-weighted variant (dw-MNE) , although several other designs take into account the same principles with

modified settings and additional parameter incorporation. For instance, the low resolution electromagnetic

tomography activity (LORETA) estimates the current density given by the minimum norm solution but with a more

sophisticated regularization, utilizing a discrete Laplace operator that selects preferentially spread source

(“smooth”) distributions, in contrast with the MNE’s identity matrix . On the other hand, parametric distributed

source imaging methods commonly include Linear Constrained Minimum Variance (LCMV) beamformers that

depend on structurally related filters to provide efficient source localization irrespective of noise covariance .

Contrary to the non-parametric approaches for solving the inverse solution, LCMV beamformers isolate the signals

produced by different parts of the brain using spatial filters, thus allowing the solution computations to occur

independently for each solution point.

Even though conventional methods have been proven to be efficient in determining the activated brain regions,

emerging technologies in the fields of Machine and Deep Learning have been recently introduced in ESI. As such,

a novel method proposed for solving the inverse problem utilizes the deep recurrent neural network architecture of

long-short term memory (LSTM) units in an auto-encoder framework, presenting exceptional mean localization

error of less than 5 mm on single-source simulated data . This architecture is able to model the spatio-temporal

information provided by training the network to perceive the correlation between the location of the source and the

EEG signals without needing a priori constrictions, normally provided manually by more conventional methods. In a

similar manner, ConvDip, a convolutional neural network (CNN), has demonstrated a lower normalized mean
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squared error in ESI solutions compared to that of exact LORETA (eLORETA) and beamformers for a single

source, utilizing a shallow CNN with one convolutional layer and two fully connected layers . Compared to the

LSTM approach, ConvDip was trained with single time-instances on simulated data but with multiple sources. This

is important, since a large variety of inverse solutions, such as eLORETA and LCMV beamformer, rely on noise

covariance matrices that are computed with the temporal information of EEG signals, significantly affecting the

accuracy of the model if the noise is increased. Moreover, the fact that simple networks can learn the patterns of

single time points and predict reasonable inverse solutions is a major point in lowering complexity and

consequently computational cost. Additional ESI neural networks frameworks include a denoising AutoEncoder

(DST-DAE) consisting of six layers, three encoding blocks and three decoding blocks. This method was able to

directly map the EEG and magnetoencephalogram (MEG) signals to the cortical sources, reducing the localization

error to less than a millimeter . In this regard, both temporal and spatial information is utilized on synthetic data,

in order to extract inverse mapping. The main advantage of this method lies in its resistance and robustness

against low Signal-to-Noise ratio (SNR), resulting in efficient source estimation with excellent denoising properties.

Added together, the recent advances in Machine Learning ESI estimation indicate the efficacy of the employed

procedures in contrast to the traditional model-driven approaches, especially since in all of the data-driven

methods, very few or no mathematical priors were used, while the need for optimizing parameters for new data is

absent.

Apart from Deep Learning designs, recent studies include hierarchical Bayesian analysis methods for source

localization. The importance of Bayesian Models relies on the incorporation of statistical a priori information about

the sources, eliminating common problems such as ghost sources and uncorrelated activation transition . The

main advantage of such solutions is the combination of data-driven learning with sparse priors, minimizing the cost

function and maximizing the probability of correlated sources . Most recently, a modified Bayesian approach was

introduced, applying the ℓ  mixed norm instead of ℓ  (primarily used with Bayesian Methods) and multivariate

Bernoulli Laplacian priors , with the main difference between the Bayesian Models being the probability

distributions for the correlation of the sources. This method was able to provide sparser solutions, minimizing the

underestimation of the intensity of activations, indicating higher localization performance than other conventional

Bayesian methods, in both simulated and in real auditory and visual evoked data but at high computational cost,

requiring almost 58 times more time than the ℓ  mixed norm approaches. In a related study , a computational

efficient Expectation-Maximization algorithm with the use of steady-state Kalman Filter (SS-KF) and steady-state

Fixed Interval Smoother (SS-FIS) provided a significant performance enhancement compared to other existing

methods, while encapsulating the spatial dependencies between the sources. The computational burden mitigation

relies on the use of SS-KF and SS-FIS that are computed once throughout the estimation of the sources without

loss of model accuracy, subsequently reducing 12-fold the time needed for results output compared to the full

KF/FIS method. It should be pointed out that the aforementioned methods present a theoretically zero localization

error, outperforming the solutions provided by neural networks. Nevertheless, the advantage of neural networks

lies in the small amount of time needed in order to compute the inverse solution. From this standpoint, the ability of

a fast calculation of the source estimates is of utmost importance in the aspiration of developing real-time ESI
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applications in the near future. A comparison of methods presented, illustrating the current state-of-the-art, is

shown in Table 1.

Table 1. Current trends in state-of the-art methods used in ESI.
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