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Wire and Arc Additive Manufacturing (WAAM) is a deposition rate process for the creation and/or repair of large structural

metallic components. The non-equilibrium heating and cooling conditions associated with WAAM lead to the development

of heterogenous microstructures. Although there is a large body of work focusing on the microstructure and mechanical

properties of WAAM-fabricated components, assessment of the corrosion behaviour of alloys fabricated by WAAM is still

in its infancy. Here, the body of knowledge associated with the corrosion behaviour of different WAAM-fabricated

engineering alloys is presented and discussed. Future perspectives and potential research topics are also presented. This

is the first work focusing on the corrosion of wire and arc additive manufactured materials.
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1. Introduction

Metallic materials are part of day-to-day life as they are key in the improvement of living conditions around the world.

Conventional manufacturing processes for metallic materials allow to create multiple components, but often there are

design limitations imposed by the manufacturing process itself. The advent of additive manufacturing (AM) allowed for

complex-shaped structures to be easily fabricated in a layer-by-layer fashion and for the construction of complex

geometries with satisfactory accuracy . Although AM processes can be applied to any class of engineering materials 

, metal additive manufacturing is currently expanding given the potential applicability prospects associated with the

combination of high strength metallic alloys with improved design flexibility enabled by AM processes. Although most AM

processes for metallic materials are focused on the fabrication of small- to medium-sized components, there is a

significant and urgent need for processes capable of fabricating larger complex-shaped structures in a timely fashion,

while decreasing material waste. With regards to this, within the field of metal additive manufacturing, wire and arc

additive manufacturing (WAAM) has a large deposition rate and is known for its low implementation costs and easy

maintenance . WAAM is already being used in the industry field for multiple applications, ranging from the repair of

obsolete metallic components to the fabrication of new parts, as well as in the oil and gas, energy and aerospace

industries . In WAAM, the large heat source can be based on gas metal arc welding (GMAW) , gas

tungsten arc welding (GTAW) , or plasma arc welding (PAW) . The selection of each of these

types of heat sources will influence the microstructure development, process stability, deposition rate, implementation

costs and industrial uptake.

Currently, WAAM of different engineering alloys is primarily focused on determining the evolution of microstructure and the

resulting mechanical properties . Determining the relationships between microstructure and

mechanical properties is currently fundamental since the application prospects of WAAM-fabricated components is for

them to be used in structural applications. Hence, it is necessary that how the weld thermal cycle impacts the

microstructure along the deposited material is understood so that one can develop new processing conditions or post-

process heat treatments, targeting an improvement in the resulting mechanical properties. Despite the importance of

linking processing conditions to microstructure and mechanical response, there are other key material features that must

be comprehensively assessed to further expand the use of WAAM in key industry sectors where the materials are in

contact with aggressive environments, such as in the oil and gas and nuclear industries . A key topic that has been

lacking attention, with scarce literature to be found on it, is the assessment of the corrosion behaviour of WAAM-fabricated

components. There is a fundamental need to address the corrosion behaviour of components built by WAAM as the type

of applications associated with this technology, namely large metallic components for critical application in the oil and gas,

maritime and aerospace industries, often require that the components be used in demanding, aggressive environments.

More importantly, it is well-known that the thermal conditions within a part fabricated by WAAM are dependent on the

location of the part. Since there is often a correlation between the thermal cycle experienced by the material and the
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resulting microstructure (coming from the solidification structure or due to solid state transformations imposed by repeated

subsequent depositions), the thermophysical properties, including corrosion behaviour of the fabricated component, can

be spatially dependent, which can aggravate the deterioration of the structural integrity during the operation of the

component.

2. Corrosion Behaviour in WAAM Materials

Corrosion is defined as a spontaneous reaction that results in material degradation as a result of its interaction with the

environment . The material’s susceptibility to corrosion is a parameter that depends on different factors, including the

corrosive environment, the chemical composition of the material, heat treatment, microstructure, surface finish, production

and processing methods .

When addressing wire arc additive manufactured (WAAMed) materials, some of the process parameters, such as travel

speed, wire feed rate, current, deposition path and protection gas flow rate , significantly affect the resulting

microstructure and surface finish and, thus, will have an observable impact on the corrosion behaviour, as previously

mentioned. This multiple-parameter effect leads to difficulty in determining their isolated influence. Despite this issue,

some authors suggested that a synchronous effect can be condensed and analysed in terms of heat input .

Compared to conventionally produced methods, AM components present complex microstructures because of the

different time-dependent temperature profiles and process parameters . These microstructures

are formed by a combination of rapid solidification rates and high thermal gradients . These processes are known to

produce complex, non-equilibrium microstructures with poor surface finish, resulting in the necessity of post-processing

treatments. Dinovitzer et al.  reported an increase in surface roughness with higher travel speeds and presented an

inverse behaviour relative to the current applied during the WAAM process, leading to an increase in corrosion

susceptibility .

Another important factor inherent to this process is the segregation of alloying elements, which is a result of different

concentrations and solidification times of the dendritic and interdendritic regions, leading to chemical heterogeneities

creating large cathodic regions enabling localised corrosion .

Despite the increasing attention WAAMed materials are attracting, there is still a lack of information in the literature

concerning its corrosion behaviour , which is of fundamental importance prior to a massive industrial application

of these materials into industrially relevant settings. During 2018 to 2022, Laser Power-Bed Fusion (L-PBF) corrosion

presented twice as much research works . Despite the increase in the number of papers, these studies focus on

specific topics related to a particular problem and/or application rather than seek a general comprehension of the

corrosion susceptibility .

3. Outlook

Table 1 presents a summary of the effects of the WAAM process on the corrosion susceptibility of the studied alloys. The

most common parameter that affected the resistance was the creation of micro-galvanic cells due to solute segregation,

emphasising the importance of homogeneous chemical composition within the fabricated material.

Table 1. Summary of the effects of WAAM Process Variables on the Corrosion Susceptibility.

Variables Effect on Corrosion Susceptibility
WAAM Systems

Affected

Solute

Segregation

Micro-galvanic cells are created, resulting in localised corrosion  and

different phases along the deposited layer, resulting in distinct corrosion

potentials .

316LN

ER70S-6

10CrNi3MoV
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Variables Effect on Corrosion Susceptibility
WAAM Systems

Affected

Refined Grain

Size

This variable is still controversial in the literature. Some authors relate coarse

and non-equiaxed grains with hindered corrosion behaviour , while others

observe the opposite .

10CrNi3MoV

825 alloy

TI-6Al-4V

Heat Input Lower corrosion potentials were observed when applying high heat input .
10CrNi3MoV

316LN

Current

Source

WAAMed materials fabricated using a pulsed current source presented more

positive corrosion potentials when compared to constant current sources .
SUS 304
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