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Logistics problems involve a large number of complexities, which makes the development of models challenging. While

computer simulation models are developed for addressing complexities, it is essential to ensure that the necessary

operational behaviours are captured, and that the architecture of the model is suitable to represent them. The early stage

of simulation modelling, known as conceptual modelling (CM), is thus dependent on successfully extracting tacit

operational knowledge and avoiding misunderstanding between the client (customer of the model) and simulation analyst.
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1. Introduction

Logistics problems involve a large number of complexities. These are introduced by the variety in vehicle fleet

composition , vehicle allocation and routing , shipment consolidation and dispatching , diverse types of

infrastructure, network design , day-to-day variability of customer consignments, difficulty of obtaining accurate

parameter data , and complex operational systems . Computer simulation methods including agent-based simulation

(ABS), system dynamics (SD) and discrete-event simulation (DES) have been used to deal with randomness. They can

represent the behaviour of logistics transportation systems with randomness: the process workflow; logical structure and

decision modules; parameters of different types; stochastic uncertainty; interactions between agents; availability of

resources; long-haul and short-haul and so on. Long-haul refers to intercity transport between depots/warehouses, and

short-haul is pickup and delivery between customer locations and the depot/warehouse. However, a model must be

created before it can be interrogated for results, and the complexity of logistics problems makes this a difficult

undertaking.

Conceptual modelling (CM) is the most crucial and challenging part of simulation modelling because it determines the

structure and accuracy of the future model . It provides the initial layout of the model, and increases the validity of the

final model . There are three main issues in the early modelling stage or the conceptual modelling stage. The first is

to design the architecture of the model , include the necessary factors, solicit the tacit knowledge, and ensure the

model is extendable and refinable. The second is to obtain data on the various parameters and apply them to the

simulation. The last is to validate the model, especially from the operational perspective . Inadequacies in any of these

stages may lead to technical debt in the future phases.

The data approach involves the industry client providing the simulation analyst with the data. Disadvantages of the

conventional approach are the sometimes-unreasonable information burden placed on the client and the introduction of

errors into the model due to undetected deficiencies in problem definition and data. Consequently, there is a risk of

technical debt occurring, whereby the deficiencies are structurally incorporated into the architecture of the model, which

then may have to be substantially reworked at a future time. Structural changes to models are effortful to change later

because the validation partly depends on the structure of the model. This is because any validation process involves an

element of tuning of parameters, and those parameters are determined by the structure of the model. Hence,

reformulating the model at a future date involves changes to the tuneable parameters, and therefore a need for

revalidation. Communication and collaboration with the client are necessary for model definition and validation. Client

participation and facilitation improve the quality of the model, but can lead to other issues such as problems in gathering

sufficient data , paradigm incommensurability, and cognitive difficulty .

Current methods for conceptual modelling have several weaknesses. First, there is a scarcity of simulation models with a

systematic and explicit method for involving communication and collaboration with the client. Previous models including

participative modelling and facilitated modelling have been proposed to alleviate these issues . These methods

mainly focus on client involvement rather than the model itself. Second, issues such as knowledge boundaries and tacit
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knowledge elicitation are seldom explicitly included, at least not in the simulation one. Third, client engagement is complex

in terms of model definition, data acquisition, and data validation. There is a need for better methods to solve multiple

information issues. Fourth, the process for transforming the conceptual model into a detailed model is not always clear.

2. Methods for Solving Logistics Problems

Logistics transportation problems can be categorised into long-haul (intercity transport between depots/warehouses) and

short-haul (pickup and delivery between client location and depot/warehouse). Typical problems, which apply to both long-

and short-haul differently, include vehicle allocation problems, vehicle routing problems, shipment consolidation and

dispatching problems, and network design problems .

2.1. Analytical Methods

Operations problems of simple to medium complexity may be solved by analytical methods such as linear programming

and regression analysis. Mixed-integer linear programming is a prevalent mathematical optimisation method that includes

objective functions and constraints. This method is frequently applied to transportation problems; e.g., in multimodal

transport , scheduling , rail transport systems , and transport energy analysis . Although analytical

models can be quickly developed, there are several limitations of these models. One limitation is the difficulty in describing

dynamic and transient effects. Additionally, analytical models are limited to simulating randomness of the system due to

the complexity of the calculations , so these models normally simplify real problems. For example, for routing models,

analytical techniques lack considerations of path constraints and practical scheduling of vehicles . Moreover, clients

may struggle to interact with these models due to the mathematical formulations.

2.2. Computer Simulation Methods

Typical simulation approaches here include ABS, SD, and DES. ABS focuses on individual entities who make their own

decisions; whereas DES concentrates on system analysis, and the process relies on model architecture. Therefore, from

the perspective of consultation and collaboration between simulation analysts and industrial clients, DES is more

straightforward, and has been widely implemented . Table 1 summarises recent applications of simulations in logistics.

Typical DES software includes Arena, SIEMENS Plant Simulation, and SIMUL8. These use program diagrams with logic

to mimic real operational procedures . Compared with traditional mathematical models, simulation models are able to

analyse stochastic events by including logic functions (decision modules) and probability distributions (using Monte Carlo

methods), so uncertainties such as delay time, arrival time, and arrival rate can be reflected in the system. Once the

model is validated, simulations can quickly analyse different scenarios.

Table 1. Applications of ABS and DES on logistics.

Logistics Areas Problems Methods

Truck platoon planning Investigate truck platoon possibilities and evaluate waiting times ABS

Freight operations
Evaluate freight-unloading operations 

Freight pickup and delivery 
DES
DES

Multimodal and intermodal transport Analyse multimodal freight-routing system DES

Railway network design
Avoid collisions ABS

Analyse queuing systems of rail network DES

Rail yard design

Design rail transhipment yard ABS

Evaluate processing capabilities of rail yard DES

Integrate high-speed rail lines with conventional railways DES

Port operations Simulate container logistics DES

Supply chain management
Estimate last-mile distance DES

Conduct inventory analysis DES
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3. Conceptual Modelling Approaches

Simulations are used to solve real-world operations problems, and this requires collaboration between the industry client

and the analyst. Figure 1 shows the conventional simulation modelling process per Robinson . The most critical steps of

simulation modelling are conceptual modelling, detailed model creation, and experiment conduction . The simulation

modelling process is generally undertaken by the analyst with partial industry client participation.

Figure 1. Conventional simulation modelling process, redrawn from Robinson .

Specifically, simulation model development at the early stage is important to a project. Scope and model definition, data

collection, and collaboration with industry are the main challenges . Proposed modelling methods include parallel and

iterative methodology , applications of discrete-event simulation , and methods to support project objective

definition . CM has been widely used to create abstractive simulation models at the early modelling stage .

Knowledge elicitation and abstraction, validity, credibility, utility, and feasibility of CM are key aspects . CM delivers

crucial information to the future models . The process may help identify relevant information  and increase the

validity of the model .

The conventional CM approach tends to adopt a linear method of problem solving, and this is seen most strongly in the

project management, waterfall, and stage-gate methods, which require each phase to be reviewed before approval is

given to proceed to the next . These methods all require complete scope definition at the outset, or sequential

decisions against predetermined objectives . In well-defined projects where the tasks are familiar to participants, these

methods may work well. However, when complexity is high; e.g., for unfamiliar work streams and uncertain requirements,

these methods struggle. The issues have been identified as ‘paradigm incommensurability’ and ‘cognitive difficulty of

switching paradigms for stakeholders’ .

4. Client Participation and Stakeholder-Facilitated Modelling

Conventional CM lacks stakeholder engagement. Involving stakeholders in simulation modelling can improve the

credibility of the model. Stakeholder engagement is emphasised in methods such as hybrid modelling  and

facilitated/participative modelling .

Hybrid modelling introduces a second loop to involve stakeholders . It illuminates that visualisation of simulation

models supports analysts to clarify modelling ideas. Stakeholders were involved through the iterative development

process. The validation conducted by this method was face validation. Participative modelling was applied to create a

simulation conceptual model. An obesity system was created by DES through participative and facilitative conceptual

modelling . The model was evaluated using knowledge elicitation and abstraction, validity, credibility, utility, and

feasibility.

Facilitated modelling was proposed to engage the client through interventions . In this mode, the simulation analyst is

also a facilitator to build relationships with the client. Compared with the conventional expert mode, the facilitated mode

relies on the analyst to develop inventions with the client. This means the analyst needs facilitation skills including ‘active

listening’, ‘chart-writing’, ‘managing group dynamics and power shifts’, and ‘reaching closure’. A DES model for a hospital

was developed, and a facilitated mode was included. The discussion with stakeholders included model understanding,

face validation, problem scoping, and improvement. The client involvement was evaluated at each modelling phrase. The

invention was achieved in this research, but the full facilitated mode was still challenging .

In the above, these stakeholder engagement models increased stakeholder involvement during the initial modelling stage.

Simplified models were developed in order to reduce the time. However, the detailed complexity of the DES model was

difficult to obtain . Boundary-spanning activities were presentations and group discussions. The validation of the

facilitated model was mainly the face validation. The facilitator/analyst did not conduct enough operational observations to

elicit tacit knowledge, which could not be noticed by stakeholders. Moreover, the communication hierarchy was unclear.
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5. Agile Method

The agile method originated in software development. Agile is primarily directed at maximising collaboration between

project stakeholders and directing work effort towards progressive development of the product . Agile development

typically uses a minimum viable product (MVP) approach. This refers to a product that embodies the primary

functionalities with the least detail. The MVP perspective is complementary to the scrum process, which is a method for

managing agile team interactions towards MVP outcomes . The method has a strong emphasis on getting the

architecture of the system correct at the early stages, which it does via a structured communication process. Hence, a

degree of validation of the model occurs much earlier in the process than in conventional simulation processes.

Some recent examples of the MVP software process are a hospital management system to improve communication ,

e-commerce systems , the Internet of Things , and enterprise management . The method has been adapted to

other disciplines such as project management and development  and entrepreneurship (business start-ups) .

The key advantages of MVP are the improvement in communication within the development team and with the client.

MVP has the potential to reduce the technical deficit (or debt) . This is the future cost of reworking the solution due

to defects in the architecture of the initial solution. Offsetting that advantage is the disadvantage that the product might

never move beyond the minimal state. However, MVP also requires resources, as recognised in the specific case of

software start-up businesses .
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