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In orbital mechanics (subfield of celestial mechanics), Gauss's method is used for preliminary orbit determination from at

least three observations (more observations increases the accuracy of the determined orbit) of the orbiting body of

interest at three different times. The required information are the times of observations, the position vectors of the

observation points (in Equatorial Coordinate System), the direction cosine vector of the orbiting body from the observation

points (from Topocentric Equatorial Coordinate System) and general physical data. Carl Friedrich Gauss developed

important mathematical techniques (summed up in Gauss's methods) which were specifically used to determine the orbit

of Ceres. The method shown following is the orbit determination of an orbiting body about the focal body where the

observations were taken from, whereas the method for determining Ceres' orbit requires a bit more effort because the

observations were taken from Earth while Ceres orbits the Sun.
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1. Observer Position Vector

The observer position vector (in Equatorial Coordinate System) of the observation points can be determined from the

latitude and local sidereal time (from Topocentric Coordinate System) at the surface of the focal body of the orbiting body

(for example, the Earth) via either:

or

where,

R  is the respective observer position vector (in Equatorial Coordinate System)

R  is the equatorial radius of the body (e.g., Earth's Re is 6,378 km)

f is the oblateness (or flattening) of the body (e.g., Earth's f is 0.003353)

ϕ  is the respective geodetic latitude

ϕ'  is the respective geocentric latitude

H  is the respective altitude

θ  is the respective local sidereal time

2. Orbiting Body Direction Cosine Vector

The orbiting body direction cosine vector can be determined from the right ascension and declination (from Topocentric

Equatorial Coordinate System) of the orbiting body from the observation points via:

where,

 is the respective unit vector in the direction of the position vector ρ (from observation point to orbiting body in

Topocentric Equatorial Coordinate System)

δ  is the respective declination

α  is the respective right ascension
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3. Gauss's Method of Preliminary Orbit Determinations Algorithm

The following equations are shown without derivation because a basic background understanding is necessary. However,

a brief explanation will be given to provide an idea of the derivation process.

The initial derivation begins with vector addition to determine the orbiting body's position vector. Then based on the

conservation of angular momentum and Keplerian orbit principles (which states that an orbit lies in a two dimensional

plane in three dimensional space), a linear combination of said position vectors is established. Also, the relation between

a body's position and velocity vector by Lagrange coefficients is used which results in the use of said coefficients. Then

with vector manipulation and algebra, the following equations were derived. For detailed derivation, refer to Curtis.

NOTE: Gauss's method is a preliminary orbit determination, with emphasis on preliminary. The approximation of the

Lagrange coefficients and the limitations of the required observation conditions (i.e., insignificant curvature in the arc

between observations, refer to Gronchi  for more details) causes inaccuracies. There are ways of increasing the

accuracy of Gauss's method such as increasing the accuracy of the Lagrange coefficients. This can be done by solving

the universal Kepler's equation. Another way to increase the accuracy is through more observations. There are

techniques/methods available that can be used but why not use Gauss's own method, least squares method (still

popularly used today).

3.1. Step 1

Calculate time intervals, subtract the times between observations:

where

τ  is the time interval

t  is the respective observation time

3.2. Step 2

Calculate cross products, take the cross products of the observational unit direction (order matters):

where

p  is the respective cross product vector

 is the respective unit vector

3.3. Step 3

Calculate common scalar quantity (scalar triple product), take the dot product of the first observational unit vector with the

cross product of the second and third observational unit vector:

where

D  is the common scalar triple product

p  is the respective cross product vector

 is the respective unit vector

3.4. Step 4

Calculate nine scalar quantities (similar to step 3):
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where

D  is the respective scalar quantities

R  is the respective observer position vector

p  is the respective cross product vector

3.5. Step 5

Calculate scalar position coefficients:

where

A, B, and E are scalar position coefficients

D  is the common scalar quantity

D  is the respective scalar quantities

τ  is the time interval

R  is the respective observer position vector

 is the respective unit vector

3.6. Step 6

Calculate the squared scalar distance of the second observation, by taking the dot product of the position vector of the

second observation:

where

R  is the squared distance of the second observation

R  is the position vector of the second observation

3.7. Step 7

Calculate the coefficients of the scalar distance polynomial for the second observation of the orbiting body:

where

a, b and c are coefficients of the scalar distance polynomial for the second observation of the orbiting body

A,B and E are scalar position coefficients

μ is the gravitational parameter of the focal body of the orbiting body

3.8. Step 8

Find the root of the scalar distance polynomial for the second observation of the orbiting body:

where

r  is the scalar distance for the second observation of the orbiting body (it and its vector, r , are in the Equatorial

Coordinate System)

a,b and c are coefficients as previously stated
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Various methods can be used to find the root, a suggested method is the Newton-Raphson method. The root must be

physically possible (i.e., not negative nor complex) and if multiple roots are suitable, each must be evaluated and

compared to any available data to confirm their validity.

3.9. Step 9

Calculate the slant range, the distance from the observer point to the orbiting body at their respective time:

where

ρ  is the respective slant range (it and its vector, ρ , are in the Topocentric Equatorial Coordinate System)

D  is the common scalar quantity

D  is the respective scalar quantities

τ  is the time interval

r  is the scalar distance for the second observation of the orbiting body

μ is the gravitational parameter of the focal body of the orbiting body

3.10. Step 10

Calculate the orbiting body position vectors, by adding the observer position vector to the slant direction vector (which is

the slant distance multiplied by the slant direction vector):

where

r  is the respective orbiting body position vector (in Equatorial Coordinate System)

R  is the respective observer position vector

ρ  is the respective slant range

 is the respective unit vector

3.11. Step 11

Calculate the Lagrange coefficients:

where,

f , f , g  and g  are the Lagrange coefficients (these are just the first two terms of the series expression based on the

assumption of small time interval)

μ is the gravitational parameter of the focal body of the orbiting body

r  is the scalar distance for the second observation of the orbiting body

τ  is the time interval

3.12. Step 12

Calculate the velocity vector for the second observation of the orbiting body:
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where

v  is the velocity vector for the second observation of the orbiting body (in Equatorial Coordinate System)

f , f , g  and g  are the Lagrange coefficients

r  is the respective orbiting body position vector

3.13. Step 13

The orbital state vectors have now been found, the position (r2) and velocity (v2) vector for the second observation of the

orbiting body. With these two vectors, the orbital elements can be found and the orbit determined.
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