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Photocatalysis, a unique process that occurs in the presence of light radiation, can potentially be utilized to control

environmental pollution, and improve the health of society. Photocatalytic removal, or disinfection, of chemical and

biological species has been known for decades; its extension to indoor environments in public places has always been

challenging. Many efforts have been made in this direction since the COVID-19 pandemic started. The development of

efficient photocatalytic nanomaterials through modifications to improve their photoactivity under ambient conditions for

fighting with such a pandemic situation is a high research priority. Several metal oxides-based nano-photocatalysts have

been designed to work efficiently in outdoor and indoor environments for the photocatalytic disinfection of biological

species. 
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1. Introduction

Even with the fast growing technology and industrial developments, the modern world is still lacking in the control of

environmental and health issues. The best example is the current COVID-19 pandemic, which has made people realize

that the modern world should also take care of the development of novel technologies, materials and medical innovations

to control such health- and environment-related issues . Various unwanted components present in the environment

affect human health directly or indirectly. In this context in particular, different microbial pathogens such as viruses,

bacteria, protozoa, etc. present in the environment may sometimes threaten human health and cause dangerous

infectious illnesses . Recent developments suggest that nanotechnology-based methods and materials could be

alternate options with the huge potential for controlling such bacterial/viral outbreaks  which have been a serious

issue and increased at a disquieting rate over the past decades .

Photocatalysis, which uses nano-photocatalysts, is one of the unique processes occurs in the presence of solar radiation

. This process is promising for the control of environmental issues and for improving the health of the society due to

the presence of unspent solar energy on the Earth . Photocatalysis has multifunctional applications in the field of

environmental studies, including the photocatalytic degradation of toxic/harmful organic compounds and gases ,

and the photocatalytic viral and bacterial disinfection of water, air, or on surfaces, which ultimately protects the

environment and improves human health . Photocatalytic removal or disinfection of such species is a

promising and environmentally friendly process using suitable photocatalysts under the influence of solar radiation.

Furthermore, it is also very cost-effective and promising in the open environment . In recent years, several metal oxide

semiconductor photocatalysts such as TiO , ZnO, CuO, WO , etc. have been designed as visible active photocatalysts.

Their properties have been improved through some modifications which enable them to work efficiently in solar light

towards photocatalytic degradation and disinfection of chemical and biological species , respectively. These are

found to be very useful for disinfecting surfaces, air, and water by killing several microorganisms i.e., bacteria and fungi,

and inactivating several viruses including influenza virus, hepatitis C virus, coronavirus, etc., . These photocatalysts

exhibit oxidative capabilities via the photocatalytic production of cytotoxic reactive oxygen species (ROS) for photo-

degradation/inactivation of such species in outdoor as well as indoor environment. It has been found to be very beneficial

for the treatment of various bacterial/viral diseases such as measles, influenza, herpes, Ebola, current COVID-19, etc., 

.

These semiconductor nano-photocatalysts are potential candidates as next-generation antibiotics and antiviral agents to

deal with multi-drug-resistant pathogens and viruses, respectively, owing to their outstanding antibacterial/viral

performance. The action of photocatalytic inactivation/degradation of these nano-photocatalysts on various bacterial and
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viruses has been successfully explained by several authors; however, the proposed mechanisms are still under debate

and continuous investigations are going on by the scientific community . 

2. Metal Oxide Based Nano-Photocatalysts

The photocatalysis method of disinfection using metal oxide semiconductors shows great potential in outdoor and indoor

environments as compared to the conventional methods for the removal of bacteria or viruses. These nano-photocatalysts

can effectively inactivate the bacteria and viruses in the presence of light radiation under ambient conditions without

producing any other by-products as compared to that of using chemicals .

Metal oxide semiconductor-based nano-photocatalysts such as TiO , and ZnO have been extensively investigated for

inactivation of several bacteria and viruses. The basic mechanism behind their photoinduced inactivation involves the

photocatalytic production of short-lived but effective biocidal ROS, i.e., hydroxyl radicals (•OH), superoxide (•O ), and

hydrogen peroxide (H O ), through photochemical redox reactions under light irradiation. . The formation

mechanism of various ROS in various cases is shown in Figure 3. Such an effectively biocidal ROS further inactivates the

bacteria and viruses by damaging deoxyribonucleic acid (DNA), Ribonucleic acid (RNA), proteins, and lipids .

The generation of ROS and the disinfection of bacteria and virus, including severe acute respiratory syndrome

coronavirus 2 (SARS-CoV-2) virus inactivation, are shown schematically in Figure 1a–c.

Figure 1. Schematic representation of photocatalytic disinfection of: (a) bacteria ; (b) HCoV-NL63 virus ; and (c)

SARS-CoV-2 virus . Under the influence of light irradiation, the photocatalysts produce electrons and holes that

undergo oxidation and reduction processes with O  and H O generating strong free radical on their surfaces. These

radicals interact with the adsorbed bacteria or viruses and inactivate them.

Under the influence of ultra-violet (UV) light radiation, these nano-photocatalysts absorb the radiation resulting in

excitation and promotion of valance band (VB) electrons into the conduction band (CB). The holes in VB interact with the

adsorbed water molecules and produce active OH and H O  free radicals. These free radicals are powerful oxidants

which generally oxidize the components/chemical in the shell and capsid of the bacteria and viruses . Subsequently,

whereas electrons in CB generally reduce the atmospheric O  (or available from the medium) and produce •O  radicals

. Similarly, •O  radicals produced in photocatalysis are effective in rupturing the capsid shell that results in the

leakage and rapid destruction of capsid proteins and RNA  (Figure 1b,c).

The ROS as produced generally attack or interact with the cytoplasmic membrane and cell wall of the bacteria or viruses

during the inactivation mechanism . However, the rate of photo inactivation/disinfection depends on the photocatalyst

used and the amount of ROS produced under the influence of the available wavelength of light irradiation, and also

depends on the internal as well as external cell structures of the type of pathogens, because all the bacteria or viruses do
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not have similar cell wall and membrane structures. These components may have complicated layered structures and

contain various types of RNA/DNA, proteins, or enzymes . For instance, cyclobutene pyrimidine dimers (CPDs)

and pyrimidine-6,4-pyrimidone (6.4 PP) photoproducts, together with the Dewar-valence isomers, are the most studied

and best described UV-induced photoreactions between and within nucleic acids . Following UV light exposure,

pyrimidine dimers (see Scheme 1) are formed. CPD and 6,4PP dimers are mainly responsible for bending the double

helix 7–9 and 44 degrees, respectively, once they are formed. DNA replication is stopped because of these alterations.

Scheme 1. Schematic diagram of how pyrimidine dimers form after DNA is exposed to UV light. between two adjacent

thymine (T) nitrogenous bases, the production of cyclobutane pyrimidine dimers (CPDs); and pyrimidine-6.4-pyrimidone

photoproducts (6.4 PP). Similar reactions for uracil in the case of RNA could take place (U) .

Because of their wide band gap, the TiO  (3.2 eV) and ZnO (3.37 eV) nano-photocatalysts absorb the high energy UV

radiation. This limits their potential photocatalytic applicability more efficiently in outdoor environments under the sunlight

because it has only 3–5% UV radiation. Furthermore, photocatalytic disinfection processes in indoor environments are

challenging, and modifications of these metal oxide nano-photocatalysts to make them visible light active photocatalysts

need to be explored . There are several ways to modify these nano-photocatalysts, such as doping with metals/non-

metals , surface modification via sensitizing or heterojunction formation  with other functional nanomaterials such

as noble metals, carbon based nanomaterials (i.e., graphene, carbon nanotubes, graphene oxide, etc.)  other metal

oxides, etc.  Emphasis has been given to enhance the surface area, prevent the recombination of

photogenerated charge carriers, and bandgap modification to extend into visible light absorption for effective use in

ambient conditions . For example, Yu et al.  demonstrated the enhanced photocatalytic activity of mesoporous

TiO  via F doping attributed to the stronger absorption in UV-visible region with a red shift in the band gap transition. Fe

doped TiO  were found to be very effective in visible region with excellent antifungal activities under natural environment

. Similarly, Ag doped ZnO  and TiO  NPs  showed better antibacterial activities in normal room conditions due to

Ag ion-induced visible light activity in these nano-photocatalysts. These nano-photocatalysts, modified with plasmonic

noble metals , are effective antibacterial and antiviral agents in dark conditions . Interestingly, such nano-

photocatalysts have also been used as memory catalysis because of their unique talent to retain the catalytic performance

in dark conditions . For example, Tatsuma et al.  demonstrated that TiO –WO  heterojuction nanocomposite

photocatalyst films could be charged by UV light irradiation which showed good antibacterial effect on Escherichia coli in

dark environment. Similarly, Ag-modified TiO  films were also shown to exhibit disinfection memory activity .

As discussed above, a great deal of research has been performed in real practical applications of such nano-

photocatalysts. Recent developments show that modified metal oxide nano-photocatalysts are promising disinfection

agents in indoor environments in ambient room conditions when applied in the form of surface coating/thin films on

commonly used surfaces in hospitals, offices, home, etc. Additionally, potential practical applications have been carried

out which show excellent results while using these nanomaterials for the disinfection of polluted water and air (in indoor as

well as outdoor environments) which show their potential to combat pandemics such as COVID-19. The disinfection

applications of such nano-photocatalysts in air, water and on surfaces have been discussed in the next sections, with an

emphasis on their mechanism of actions.
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