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Limiting an essential nutrient has a profound impact on microbial growth. The notion of growth under limited

conditions was first described using simple Monod kinetics proposed in the 1940s. Different operational modes

(chemostat, fed-batch processes) were soon developed to address questions related to microbial physiology and

cell maintenance and to enhance product formation. With more recent developments of metabolic engineering and

systems biology, as well as high-throughput approaches, the focus of current engineers and applied microbiologists

has shifted from these fundamental biochemical processes. 

chemostat  Escherichia coli  fed-batch  metabolic engineering

1. Introduction

Biochemical processes use enzymes or microorganisms as catalysts to convert a substrate to a product, and are

analogous to chemical processes in terms of basic design parameters including stoichiometry, energy

relationships, kinetics, and equilibria . Design and implementation of microbial bioprocesses additionally require

an understanding of metabolic activity and its effect on growth and product formation as well as factors which

influence organisms and these cellular reactions.

Operationally, microbial bioprocesses are often classified by the strategies used for substrate addition and product

removal (Figure 1). In a batch process, the carbon-substrate/energy source as well as other nutrients are at the

onset charged into the reactor, and product is harvested at the conclusion of the process, typically when the carbon

source is depleted. Although material can be introduced into the reactor for oxygenation, pH control, foaming, and

other minor reasons, a batch process is considered a closed system. Other operations in contrast are implemented

as distinctly open systems. A chemostat occurs when the flowrates of a nutrient-containing feed and an effluent of

products and residual nutrients are equal . The dilution rate (D) normalizes that feed rate F by the constant

volume of the system V (D = F/V). In addition, any of several semi-continuous fed-batch processes involve the

feeding of nutrients often without product withdrawal . Variations on these basic operational modes include a

turbidostat , wherein the feed rate is controlled to maintain a constant cell density, and an accelerostat ,

wherein the dilution rate is changed progressively and slowly to maintain prolonged pseudo-steady-state conditions

over a range of growth rates. A two-reactor cascade in which biomass formation and product formation are spatially

distinct is another novel continuous operational mode which increases volumetric productivity of intracellular

products . Several of the methods for continuous cultivation have been critically compared for their utility in high-

resolution characterization of metabolism .
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Figure 1. The three general modes of fermentation operation: batch, continuous, and fed-batch processes.

2. Chemostat Processes

Originally developed to study bacterial cultures for a long duration , the chemostat maintains the cell growth rate

lower than the maximum specific growth rate (μ ). The chemostat is an indispensable tool to investigate how

growth rate affects cellular processes and how cells or consortia of cells evolve in response to nutrient limitation as

a selective pressure , though it is particularly difficult to operate for microbes which grow on walls or aggregate

such as filamentous fungi . One can dictate which nutrient limits cell growth (e.g., C, N, P, etc.) merely by

adjusting the medium composition . Mean residence time in the chemostat is equal to the inverse of the dilution

rate 1/D . If the selected dilution rate is lower than the maximum specific growth rate (μ ) at the given

environmental conditions, then a steady-state is normally achieved: the growth rate the microbes experience (μ)

becomes equal to D, and the limiting nutrient attains a low, constant concentration (e.g., Equation (2)). If the

dilution rate approaches or exceeds the maximum specific growth rate, then the cells cannot grow as quickly as the

medium is withdrawn, leading to net loss of cells and culture washout. Because chemostat processes maintain a

high biomass concentration compared to batch processes, a chemostat achieves a fairly high product and biomass

volumetric productivity or space-time yield. Unfortunately, a continuous operation has an increased prospect of

contamination or genetic drift during a prolonged biological process because of competition for the limiting nutrients

. Indeed, given the likelihood for mutations, a chemostat does not strictly reach a physiological “steady-

state” . In fact, at a long time-scale, the chemostat is an invaluable tool to evolve strains with greater substrate

affinity , with relieved auxotrophy  or with a gain of substrate utilization . Different limiting nutrients

(e.g., N-limited versus Fe-limited) change the profile of mutations that occur, and the rate of mutations . Nutrient-

limited conditions also encourage phenotypic heterogeneity .

Care must be made in medium design for nutrient-limited processes because cells use a portion of the

carbon/energy source for maintenance and also often to accumulate storage products. Therefore, the proportion of

nutrients needed for a growth limitation itself depends on the growth rate, and dual-nutrient-limited regions are

possible . One fixed medium composition can lead to C-limited growth at a low dilution rate, dual C/N-
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limited growth at an intermediate dilution rate, and N-limited growth at a high dilution rate . Nevertheless,

operation of a chemostat is useful to identify optimal conditions for fed-batch operations for biochemical generation

(e.g., ), and therefore, the chemostat is an indispensable tool for bioprocess development.

3. Fed-Batch Processes

Fed-batch is a semi-continuous process in which one or more nutrients are supplied to the growing microbial

culture with or without periodic withdrawal . A fed-batch process can be implemented so that nutrients are

intermittently added to the reactor and are always in excess from the perspective of the cells (i.e., relative to K ),

resulting in a process physiologically similar to a batch process. Such a culture allows prolonged growth at µ

and can be considered a non-limited-nutrient fed-batch or a repeated fed-batch, although the latter term is often

applied to a fill-and-draw process in which a portion of culture is periodically withdrawn and fresh nutrients supplied

. This type of fed-batch process is particularly beneficial in cases for which a high concentration of a particular

nutrient inhibits microbial growth, since that nutrient can be maintained below its inhibitory concentration while

achieving a near maximal growth rate . Alternatively, a nutrient-starved fed-batch is a common process which

involves growing a culture first with ample nutrients, and then in a subsequent cycle, supplying the culture with a

feed in which at least one essential nutrient is absent. In such a nutrient-starved process, often the carbon/energy

source is supplied to satisfy the cultures’ maintenance requirement, while the absence of another nutrient (e.g., N)

prevents growth . In this case, cells cannot continue growing without the missing essential nutrient(s), but they

often remain able to metabolize the supplied carbon source and accumulate storage products or transform that

carbon source into a desired product .

A fed-batch process can also be implemented as a nutrient-limited fed-batch, which like a chemostat necessitates

that a nutrient feed is introduced at a rate lower than the growing culture can maximally metabolize. In contrast to a

nutrient-starved process, though, the culture is growing continuously, and the rate of introducing the limiting

nutrient controls the metabolic and growth rates . Because no effluent typically exists, cells and products remain

in the culture, enabling fed-batch processes to achieve high cell density and product concentration. A quasi-steady

state is achieved in nutrient-limited fed-batch cultures .

Nutrient-limited fed-batch processes can be operated in several ways. For example, the growth-limiting nutrient can

be introduced into the culture at a constant rate or at an exponential rate . When a growth-limiting nutrient is fed

at a fixed rate (F ), the growth rate of the culture decreases with time . In an exponential fed-batch process

the nutrients are fed at an exponentially increasing rate to match the needs of the growing culture, to maintain a

constant growth rate μ  less than μ . 

4. Nutrient Limitation Compared to Nutrient Starvation

From the cells’ perspective, nutrient limitation is quite different from nutrient starvation , the latter which is often

called a “resting cell” process. Nutrient limitation permits continued, possibly steady-state growth, whereas
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starvation in one or more essential nutrient induces dynamic stress responses and ultimately prevents further

growth . Many researchers examine the effect of nutrient scarcity by restricting an essential nutrient in the

medium to cause that nutrient to be depleted first, or by transferring washed and concentrated cells from a

complete to a depleted medium (e.g., ). Similarly, batch processes are typically composed of a medium from

which carbon is depleted first, leading many to refer to such a batch process as “carbon-limited”. The term

“starved” would be preferred to describe a batch process: only after a period of maximal growth do the cells

transition quickly to non-growth due to first deficiency then absence of that one (or more) nutrient. The distinction is

more important when a nutrient other than the carbon source is the first to be depleted, because the remaining

excess carbon/energy source often continues to be consumed and converted into an intracellular or extracellular

product despite, or often because of, the lack of growth.

Because of these physiological differences, care should be taken when comparing results from nutrient starvation

with nutrient limitation, wherein growth is maintained by the slow addition of one or more limiting nutrients. The

literature is replete with studies describing “nutrient limitation”, when in fact the initial medium was merely adjusted

so that the cells experience a short batch process until a specified nutrient is depleted, that is, the cells transition

from a higher growth rate to being starved for that nutrient. Typically, these studies examine the culture for the

metabolism of a remaining excess carbon source while the culture transitions from nutrient scarcity to nutrient

exhaustion. Nutrient limitation implies a process in which the cells continue to grow.

To understand the physiological response of an organism to nutrient limitation, it is very important to have

controlled conditions (pH, temperature, and oxygen) and a well-defined medium since common complex

components such as yeast extract and peptone complicate the identification of the limiting nutrient and

interpretation of the cellular response .

One important measurement associated with nutrient limitation and cell growth in general is the biomass yield,

which expresses the quantity of cells on a dry basis generated per quantity of nutrient consumed (e.g., units of g

cells/g nutrient).

5. Physiological Effects of Non-Carbon Nutrient Limitation

5.1. Nitrogen

Nitrogen occurs throughout cells, in proteins, nucleotides, and many metabolites. Nitrogen as ammonium is

assimilated in E. coli and most bacteria and yeast into glutamine and glutamate , which are the primary

intracellular nitrogen donors. In bacteria, 88% of the cellular nitrogen is derived from glutamate, while 12% is

derived from glutamine . Glutamate is the most abundant metabolite in E. coli, accounting for about 40% of the

total metabolite concentration . In many bacteria such as E. coli, two ammonium-assimilating pathways are

available, a NADPH-dependent glutamate dehydrogenase and a high-affinity glutamate synthase (glutamine

oxoglutarate aminotransferase, GOGAT)/glutamine synthase. Glutamate dehydrogenases generally have high

values of K  for ammonium, so that during N-limited growth, glutamine synthase expression is elevated to maintain
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sufficient glutamate . Dynamic N starvation in E. coli and S. cerevisiae growing on glucose depletes glutamine

and to a lesser extent glutamate while α-ketoglutarate increases markedly and can even be excreted .

Accumulation of α-ketoglutarate occurs in cyanobacteria also, a signal which upregulates nitrogen assimilation via

the global regulator NtcA and other regulators . In yeast, the concentration of tryptophan, which relies on

glutamine for its synthesis, decreases, while phenylalanine and tyrosine, which rely on glutamate for nitrogen, do

not change, resulting in an accumulation of phenylpyruvate and phenylethanol, a quorum-sensing signal .

Accumulated α-ketoglutarate in E. coli noncompetitively and cooperatively inhibits EI of the PTS , citrate

synthase , and PEP synthetase . Furthermore, sudden nitrogen availability in N-starved wild-type E. coli

induces a decrease in α-ketoglutarate and rapid increase in glucose uptake rate, while in a PTS-deficient strain

with elevated galactose permease, glucose uptake is insensitive to N-availability . In general, S. cerevisiae N-

limitation leads to depletion of intracellular amino acids, particularly at low dilution rates . Because intracellular

glutamine and arginine concentration correlates strongly with dilution rate, these compounds likely control growth in

N-limited S. cerevisiae . Synechocystis also accumulate α-ketoglutarate  under N-starvation as well as

glycogen, which is associated with the induction of the glgX gene . E. coli has a high protein turnover

under N-limited conditions compared to C-limited or P-limited conditions .

5.2. Phosphorus

Phosphorus occurs in cells as phosphorylated organic compounds such as general sugar-phosphates,

phospholipids, phosphorylated proteins, RNA, DNA, and ATP. The response to a P-deficiency is typically mediated

by a two-component signal transduction system. The sensor kinase component, PhoR, phosphorylates a response

regulator that amplifies its own response, increases expression of proteins which scavenge phosphate such as a

high-affinity phosphate transporter . Thus, P-limitation has multiple physiological consequences. For example,

P-limitation causes a shift in the structure of the cell wall of Gram-positive microbes such as B. subtilis from P-

containing teichoic acid to teichuronic acid which lacks phosphorus . As a result, P-limited B. subtilis contain

less than half as much cellular phosphate as bacteria grown in excess P, and phages which bind to teichoic acid

bind less effectively under P-limited conditions . In this case, phosphorylated PhoPR represses tagAB operon

to restrict teichoic acid synthesis and activates the tua operon to stimulate teichuronic acid synthesis . P-

limitation triggers the synthesis of phosphate-mobilizing hydrolases such as alkaline phosphatases and

ribonucleases . In S. cerevisiae, genes responsible for uptake of inorganic phosphates and inositol phosphates

are upregulated under steady-state P-limitation at 0.1 h , and surprisingly, polyphosphates accumulate in this

yeast’s vacuoles . Cells appear to use ribosomes for protein synthesis at higher efficiency under phosphate

limitation , and the RNA content is 6–8-fold greater than expected to be necessary for maintenance of the

growth rate, though this RNA is immediately usable when P-limitation is relieved .

5.3. Sulfur

Sulfur is present in the amino acids methionine and cysteine, and important metabolites such as S-

adenosylmethionine, Coenzyme A (CoA), and lipoic acid. In most media, S is supplied as the sulfate ion, and thus,

S-limitation is often studied specifically as sulfate-limitation.
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Unsurprisingly, S-limited growth leads to increased transcription of proteins encoding for the uptake of sulfur, such

as in S. cerevisiae , E. coli . Under S-limitation or S-starvation, several organisms preferentially express

proteins having a low sulfur content . For example, under S-limitation, S. cerevisiae upregulates by as

great as 50-fold the PDC6 transcript expressing a protein with only 6 sulfur-containing amino acids compared to

isozymes PDC1 and PDC5 having 17–18 sulfur-containing amino acids , while K. aerogenes maintains lower

protein content in the cell wall under S-limitation compared to other nutrient-limited conditions, and this remaining

protein contains a low sulfur content . The ABC transporter sulfate-binding proteins of Salmonella typhimurium

and E. coli responsible for sulfate uptake in a low S environment themselves contain no sulfur . When

Pseudomonas putida encounters S-depletion, it replaces proteins having high S content with proteins having lower

amounts of cysteine and methionine . K. aerogenes also excretes proteins lacking S when grown under S-

limited conditions on glucose . This phenomenon has been observed in many microbes, including cyanobacteria

. In transitioning between S-limitation and S-enrichment, cells must synthesize new RNA, whereas under C-

limitation, the cells use previously synthesized translation machinery, including inactive ribosomes .

In E. coli, S-starvation resulted in a 2.8-fold greater glucose uptake rate than N-starvation, and 40% greater

glucose uptake rate than P-starvation, but about 70% less than the glucose uptake rate observed during Mg-

starvation . In B. subtilis, S-starvation resulted in identical glucose uptake rates as observed during N-, P-

starved conditions . S-limitation in E. coli led to secretion of pyruvate (yield of 0.33 g/g), succinate (0.11 g/g),

and acetate (0.10 g/g) despite the aerobic conditions . S-limited chemostat cultures of K. aerogenes also

secreted more pyruvate than N-, P- or C-limited growth on glucose , while S-limited chemostat cultures of K.

aerogenes (formerly Aerobacter aerogenes) at high growth rate (0.42 h ) showed pyruvate and 2-oxoglutarate

accumulation . These observations may be explained by comparing a typical protein (~3% S content by mass)

to the sulfur-containing cofactors CoA-SH (4.2% S), lipoic acid (31.1% S), and thiamine pyrophosphate (7.5% S).

Each one of these cofactors is a component of the subsequent pyruvate/2-oxoglutarate dehydrogenase step, and

the limitation of these cofactors would likely limit metabolic conversion of pyruvate under S-limited conditions .

Further evidence identifies lipoic acid as the predominant limiting factor . Interestingly, in contrast to growth on

glucose which generated pyruvate and acetate, acetate was the only significant product when K. aerogenes was

grown on glycerol, mannitol or lactate under S-limited conditions .

S-limitation appears to favor plasmid stability compared to C-, N- or P-limitation, particularly at high growth rate .

This observation was attributed to the fact that among these four nutrients, only S is not a constituent of nucleic

acids. S-starvation resulted in the greatest mevalonate yield from glucose (0.6 mol/mol) compared to Mg-, P- or N-

starvation . S-starvation (referred to as MgSO  limitation) increased limonene formation by E. coli .

Similarly, lipid formation elevated when the oleaginous yeast Rhodosporidium toruloides became starved for S .

The fluxes through the TCA cycle and toward acetate formation were suppressed by S-starvation, and the pentose

phosphate pathway appears to be the principal route for NADPH generation .

5.4. Magnesium
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Magnesium is an integral component of ribosomes , and stabilizes the outer membrane in Gram-negative

prokaryotes through the creation of ionic bridges . The element as Mg  is also involved in DNA stability and

repair , and it plays an important role as an enzyme cofactor. Many complex medium formulations supplemented

with carbon source (such as “Lysogeny Broth” medium) become starved for Mg, and can lead to protein acetylation

at lysine residues . There have been a few reports on cellular Mg composition, and the yield coefficient is highly

dependent on cell growth rate.

Mg-starvation causes E. coli cells to restructure the outer membrane and redistribute Mg . Although the yield

coefficient decreased with increasing dilution rate, Mg-limited K. aerogenes cultures do not synthesize intracellular

polysaccharides, which is attributed to an impaired ability to synthesize these materials when Mg is limiting . Mg-

limitation results in larger and filamentous E. coli cells . Within 400 steady-state Mg-limited generations,

mutations arise in genes involved in the cell-membrane in E. coli . Under Mg-limited conditions, both yeast 

and bacteria  reduce the surface hydrophobicity of the lipopolysaccharide (LPS) component of the outer

membrane, likely by increasing the proportion of polar sugar residues in the LPS, such that lower amounts of Mg

are needed for stabilization of the LPS. 

5.5. Iron

Consistent with the theme of cells conserving limited resources, Fe-limitation causes cells to reduce their reliance

on pathways which contain significant Fe, such as the tricarboxylic acid cycle (aconitase, fumarate hydratase,

succinate dehydrogenase) and the proton-pumping components of the electron transport chain . This

realignment of metabolism has physiological consequences. For example, under Fe-limiting aerobic conditions, E.

coli generates acetate at a yield of 0.25 g/g at a dilution rate of 0.4 h , but accumulates predominantly lactate

(yield of 0.60 g/g) at 0.1 h  . Elevated lactate under the most severe steady-state Fe-limitation provides cells a

means to oxidize NADH when the Fe-requiring Nuo complex is curtailed, while an increased glucose uptake rate

serves to meet ATP demand . Lactate formation is also observed for Staphylococcus aureus exposed to Fe-

starvation . The reduction in activity of TCA cycle enzymes and accumulation of NADH encourages the

formation of ethyl acetate by Kluyveromyces marxianus  and Candida utilis . Because of the restricted

capacity of the electron transport chain subject to Fe-limited conditions, cells essentially behave like they are

encountering anaerobic conditions. For example, E. coli accumulates acetate and formate under Fe-limited steady-

state conditions, attains a 60% greater glycolytic flux, and reduces by a factor of 5 the fraction of glucose entering

the TCA cycle . More generally, Fe-limitation impacts oxygenation and redox state because numerous electron-

carrying enzymes contain Fe-S clusters, and many Fe-containing enzymes or pathways are constrained under Fe-

limitation. For example, the nitrogenase enzyme system contains significant Fe , and Fe-limitation thus

severely reduces nitrogen fixation by Azotobacter vinelandii . Notably, lactic acid bacteria, which lack

cytochrome and show generally high tolerance to peroxide, do not require iron for growth at all .
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