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Artificial intelligence (AI) is a game changer in many fields, including cultural heritage. It supports the planning and

preservation of heritage sites and cities, enables the creation of virtual experiences to enrich cultural tourism and

engagement, supports research, and increases access and understanding of heritage objects. Despite some

impressive examples, the full potential of AI for economic, social, and cultural change is not yet fully visible.

cultural heritage  AI  agenda

1. Introduction

Digitization is key for protecting, preserving, documenting and opening up European and global cultural heritage (CH) to

meet pressing sustainability threats, including environmental ones and increasing social inclusivity. Within the CH

sector, economic activities related to digital collections in cultural institutions are a market worth ten bn EUR in 2015 .

These developments have been accelerated by the COVID-19 pandemic . Digital technologies can transform the

entire value chain model in CH institutions—from capturing and digitizing tangible and intangible heritage and long-term

preservation over innovative digital research methods to digital channels allowing people across the globe to interact

with digital objects. These channels enable connections to other collections published on the web and accelerate the

creation of new artistic works, unearthing new narratives in collections. While all these areas of work could be improved

by applying the latest digital technologies, a significant increase is expected during the next few years.

The Strategic Topic Group (STG) Cultural Heritage in Green and Digital Transitions for Inclusive Societies was formed

in 2022 within the European Institute of Innovation and Technology’s (EIT) Knowledge and Innovation Community for

Culture & Creativity and seeks to unlock the potential of CH for the green and digital transitioning of Europe

encompassing societal challenges on this key policy topic. The group includes 32 partner organizations in mid-2023

and focuses on four closely connected areas, including (i) upskilling and capacity building; (ii) environmental impact of

operations of CH institutions; (iii) increasing outreach and community engagement; and (iv) creation of new business

models.

2. Application Fields of AI in CH

In CH, AI is being used in a variety of research areas. These include:

[1]

[2]



Artificial Intelligence for Digital Heritage Innovation | Encyclopedia.pub

https://encyclopedia.pub/entry/55488 2/11

Image analysis and restoration: AI algorithms can analyze and restore old, damaged, or degraded (moving)

images, sounds, paintings, and photographs. These algorithms can enhance image quality, remove noise, and even

reconstruct missing parts of the artwork, aiding in preserving and restoring cultural artifacts. Examples listed in  are

the prediction of the painting’s style, genre, and artist, the detection of fake artworks by stroke analysis, and the

artistic style transfer using adversarial networks to regularize the generation of stylized images.” Further research

deals with the automatic colorization of images  and the restoration of ancient mosaics .

Object recognition and classification: AI-powered computer vision techniques enable automatic recognition and

classification of cultural objects. By analyzing visual features and patterns, AI algorithms can identify and categorize

artifacts, sculptures, and architectural elements , facilitating the organization and cataloging of museum

collections. Examples are the prediction of color metadata, e.g., for textile objects , of technique, timespan,

material, and place metadata for European silk fabrics , and the recognition and classification of symbols in

ancient papyri .

Translation and transcription: AI language models are capable of translating. e.g., ancient texts, inscriptions, and

manuscripts into modern languages. They can also be used for modern languages by translating metadata or full-

text content of heritage objects and related information, making sharing cultural heritage across languages easier.

Other models can transcribe handwritten texts, allowing researchers and historians to access and understand

historical documents and perform automated analysis (e.g., ).

Automatic text analysis: This comprises various approaches . An example is the automatic semantic indexing of

pre-structured historical texts, which enables historians to mine large amounts of text and data to gain a deeper

understanding of the sources (e.g., ); for example, tax lists or registers of letters sent to a historical entity .

Virtual Reality (VR) and Augmented Reality (AR): AI technology supports the creation of immersive VR and AR

experiences for CH sites and museums. Visitors can virtually explore ancient ruins, historical sites, or museum

exhibitions, interacting with AI-generated virtual characters or objects to enhance their understanding and

engagement with the cultural context .

Recommender systems for personalized experiences: AI algorithms can analyze user preferences, historical

data, and contextual information to provide personalized recommendations for CH experiences. Despite the risks of

information filtering (e.g., ), use is to suggest relevant exhibits, customized tours, or tailored content, AI-powered

recommender systems enhance visitor engagement and satisfaction, or—triggered by the advent of large language

models (LLMs) such as GPT—dialogue and chatbot systems. Examples are the use of chatbots in museums 

or recommender systems for CH collections (e.g., ).

Cultural content analysis and interpretation: AI techniques, such as natural language processing (NLP), are used

to analyze large volumes of cultural content, including literature, music, and artwork. This analysis can reveal

patterns, themes, and cultural influences, providing valuable insights into historical contexts and artistic movements.

Examples are metadata enrichment (e.g., ) and linking to open data sources (e.g., ).
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Heritage digitization and preservation: AI can be crucial in digitizing cultural artifacts and archives. By automating

digitization processes and extracting knowledge, AI speeds up the preservation of CH, allowing researchers and the

public to explore and study rare artifacts remotely. Several articles provide an overview of particular technologies,

e.g., for 3D acquisition, such as laser scanning  or photogrammetry , and quantify their use . AI-powered

systems can monitor and analyze CH site environmental conditions, helping with early detection of potential threats

such as humidity, temperature fluctuations, and structural damage. This real-time monitoring aids in the proactive

conservation and protection of cultural landmarks (e.g., ).

Multimodal analysis: AI is capable of bringing together different sources and types of data. Approaches include

text, images , 3D models , audio , and video .

AI supports or creates artistic expressions: Applying algorithms that analyze heritage objects (or entire

collections) and extract information that either artists and other creators can use to create new works  or AI

creating “artistic” expressions.

3. Project Examples

To date, there are some impressive examples of the utilization of AI technologies in the field of CH (Table 1).

Table 1. Project examples of AI application in CH (all links accessed on 1 December 2023).
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Art Transfer by Google Arts & Culture
Using AI algorithms, Art Transfer allows users to transform their photos into the style of famous artists such
as Van Gogh or Picasso.
Link: https://artsandculture.google.com/camera/art-transfer

MicroPasts by the British Museum
MicroPasts is a project that combines crowd-sourced data with AI technology. Volunteers contribute by
digitizing and tagging images while AI algorithms analyze the data.
Link: https://micropasts.org/

4Dcity by the University of Jena
This application uses AI to automatically 4D reconstruct past cityscapes from historical cadastre plans and
photographs. This 4D model is world-scale and enriched by links to texts and information, e.g., from
Wikipedia, and accessible as mobile 4D websites .
Link: https://4dcity.org/

SCAN4RECO
This EU-funded project combines 3D scanning, robotics, and AI to create digital reconstructions of
damaged or destroyed CH objects.
Link: https://scan4reco.iti.gr/

AI-DA by Aidan Meller Gallery
AI-DA is an AI-powered robot artist developed by Aidan Meller Gallery in the United Kingdom. The robot
uses AI algorithms to analyze and interpret human facial expressions, creating drawings and paintings
inspired by the emotions it perceives. AI-DA’s artworks have been exhibited in galleries across Europe.
Link: https://www.ai-darobot.com/
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Transkribus by Read Coop SCE
Transkribus is a comprehensive solution for digitization, AI-powered text recognition, transcription, and
searching historical documents. A specific emphasis is on handwritten text recognition.
https://readcoop.eu/transkribus/

Transcribathon
The Transcribathon platform is an online crowd-sourcing platform for enriching digitized material from
Europeana. It applies the Transkribus handwriting recognition technology to input documents, performs
some automatic enrichments (including translation) on the obtained text and metadata, and lets volunteers
validate the results.
https://transcribathon.eu/

The Next Rembrandt by ING Bank and Microsoft
This project employed AI algorithms to analyze Rembrandt’s works and create a new painting in his style.
https://www.nextrembrandt.com/

Rekrei (formerly Project Mosul)
Rekrei is a crowd-sourcing and AI project aimed at reconstructing CH sites that have been destroyed or
damaged. Users can contribute photographs and other data, and AI algorithms help in reconstructing the
lost heritage digitally.
https://rekrei.org/

Notre Dame reconstruction
After a fire destroyed parts of the Notre Dame Cathedral in Paris in 2019, a digital twin model was created
to experiment—physical anastylosis, reverse engineering, spatiotemporal tracking assets, and operational
research—and create a reconstruction hypothesis. The results demonstrate that the proposed modeling
method facilitates the formalization and validation of the reconstruction problem and increases solution
performance .
https://news.cnrs.fr/articles/a-digital-twin-for-notre-dame

Finto AI by the National Library of Finland
Finto AI is a service for automated subject indexing. It can be used to suggest subjects for text in Finnish,
Swedish, and English. It currently gives suggestions based on concepts of the General Finnish Ontology,
YSO. Link: https://ai.finto.fi

Europeana Translate
This project has trained translation engines on metadata from the common European data space on
cultural heritage in order to obtain a service that can translate CH metadata from 22 official EU languages
to English, improving the multilingual experience provided to its users. It has been applied to 29 million
metadata records so far.
Link: https://pro.europeana.eu/post/europeana-translate-project-brings-together-multilingualism-and-
cultural-heritage

MuseNet by OpenAI
MuseNet composes original music in a wide range of styles and genres. It can create music inspired by
different cultural traditions and historical periods, demonstrating the potential of AI in generating new
compositions that reflect CH.
Link: https://openai.com/research/musenet

The Hidden Florence by the University of Exeter
The Hidden Florence is an AI-enhanced mobile app that guides visitors through the streets of Florence,
Italy, offering insights into the city’s rich CH in an engaging way. The app utilizes AI algorithms to provide
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4. AI Technologies for CH State of the Art

4.1. AI and Images

Historical images hold immense value in documenting our collective heritage. However, analyzing and extracting

information from these images manually can be limited, e.g., due to the required effort. Current evolvements in

computer visualization are closely coupled to the massive renaissance in ML  with the use of convolutional neural

networks (CNNs, cf. ). There is a large number of computer vision techniques employed in historical image analysis

, including:

Content-based image retrieval: Efficient retrieval and exploration of historical images based on visual similarity and

content-based features. However, traditional ML technologies currently require large-scale training data ,

which are only capable of recognizing well-documented and visually distinctive landmark buildings  but fail to deal

with less distinctive architecture, such as houses of similar style. Even using more advanced ML approaches or

combining different algorithms  only allows the realization of prototypic scenarios .

Image-based localization: Connecting images with the 3D world relevant for AR/VR applications requires

estimating the original six-degree-of-freedom (6DOF) camera pose. While several methods exist for homogeneous

image blocks , the problem becomes increasingly complex for varying radiometric and geometric conditions,

especially relevant for historical photographs .

Image recognition and classification: Identifying objects, scenes, or people depicted in historical images using

deep learning models, such as CNNs. This field ranges from the detection of WW2 bomb craters in historical aerial

images , via historical photo content analysis  to historical map segmentation .
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3109–3127.
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263, 112029.
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location-based narratives, AR experiences, and interactive storytelling.
Link: https://hiddenflorence.org/

Smartify App by Smartify
Smartify utilizes AI to provide interactive experiences with artworks in museums and galleries. The mobile
app uses image recognition to identify artworks, delivering detailed information, audio guides, and curated
tours. It is compatible with numerous cultural institutions across Europe and beyond.
Link: https://smartify.org/

Second Canvas App by Madpixel and the Prado Museum
The app uses AI technology to enhance the visitor experience. It provides high-resolution images of
artworks, along with interactive features that allow users to explore the details and stories behind the
paintings.
Link: https://www.secondcanvas.net/

WAIVE
WAIVE is a smart DJ system utilizing AI to create unique music samples, beats, and loops from the
digitized audio archives of the Netherlands Institute for Sound & Vision.
Link: https://www.thunderboomrecords.com/waive
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Semantic segmentation and object detection: Locating and recognizing specific objects or regions of interest

within historical images using techniques like Faster R-CNN and YOLO. In semantic segmentation, to classify parts

of images .

Image restoration and enhancement: Repairing and enhancing degraded or damaged historical images through

techniques like denoising, inpainting, and super-resolution .

4.2. AI and Text

Historical texts provide a rich source of information for understanding the past. However, the sheer volume and

complexity of historical archives make manual analysis laborious and time-consuming . ML algorithms supported

these processes in various ways—from optical character recognition (OCR) to automating the extraction of knowledge

and patterns from historical texts . Approaches include these ML approaches commonly used in historical text

analysis:

NLP techniques: Named entity recognition, part-of-speech tagging, sentiment analysis, and topic modeling. The

most recent applications of CNNs and Transformer  are consistently successful in accurately extracting and

reducing the number of errors even with unsupervised pre-training.

Text classification algorithms: Naive Bayes, Support Vector Machines, and Random Forests.

Sequence models: Hidden Markov models, conditional random fields, and recurrent neural networks.

In addition, various preprocessing techniques are used for historical texts to enable their digital processing and respond

to challenges such as linguistic variations, archaic vocabulary, and textual degradation:

Preprocessing: Includes character recognition (e.g., OCR), unification, processing of spelling variations and

alignment to controlled vocabularies (e.g., ).

Postprocessing: Used to check and correct any OCR reading errors via neural network approaches .

4.3. AI and Virtual 3D Objects

The application of AI in 3D for CH has gained significant attention in the research community to enhance the analysis,

interpretation, and preservation of CH in 3D environments. Here are some key areas of scientific analysis:

Object recognition and classification and semantic segmentation: In 3D/4D reconstruction of CH, ML-based

technologies are currently used primarily for specific tasks. This involves AI models to identify specific architectural

elements, artifacts, or decorative motifs, to recognize specific objects , and to preselect imagery .

Other tasks include AI-based semantic segmentation techniques to partition 3D models into meaningful regions or

components .
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3D model creation: Research has focused on developing AI-based algorithms for efficient and accurate 3D

reconstruction of CH objects, buildings, and sites. Traditional algebraic approaches, as in photogrammetry, employ

algorithms within equations, e.g., to detect, describe, and match geometric features in images  and to create 3D

models. ML approaches are currently heavily researched and used for image and 3D point cloud analytics in CH

(recent overview: ), but increasingly for 3D modeling tasks. Generative adversarial networks (GAN), a combination

of the proposal and assessment components of ML, are frequently employed as approximative techniques in 3D

modeling, e.g., for single photo digitization , completion of incomplete 3D digitized models  or photo-based

reconstructions . Recent approaches include neural radiance fields (NeRF) , which have shown

strength in creating 3D geometries from sparse and heterogeneous imagery and short processing time .

Image to visualization approaches: Approaches bypass the modeling stage to generate visualizations directly

from imagery , e.g., by transforming or assembling image content (recent image generators like DALL-E ,

Stable Diffusion or Midjourney). Other approaches based on NeRF to predict shifting spatial perspectives even from

single images  can predict 3D geometries.

Use of ML algorithms to detect patterns, anomalies, or changes over time within 3D models (e.g., ). The

analysis involves assessing the effectiveness of AI in extracting meaningful information from large-scale 3D

datasets, supporting archaeological research, conservation efforts, or architectural analysis.

4.4. AI and Maps

The application of AI to cartographic corpora is relatively new and for now primarily addresses the need to segment

historical cartography to extract graphs and assign semantic classes to them. To date, these approaches are still

entirely manual in many cultural institutions, making it possible to extract useful information on the stylistic-graphic

evolution of cartography or graphical elements of the past, such as the road network  or the footprints of buildings on

a large scale. Recently, the CNN approach has inaugurated some promising lines of study on segmentation .

Historical cadastres provide a stable geometric medium to infer procedural 3D reconstructions . Because of their

visual homogeneity, they can be segmented and annotated using CNN and Transformer approaches .

4.5. AI and Music

The International Society for Music Information Retrieval defines Music Information Retrieval (MIR) as “a field that aims

at developing computational tools for processing, searching, organizing, and accessing music-related data” . MIR

utilizes various computational methods such as signal processing, ML, and data mining (i.e., ). MIR may use various

forms of music data such as audio recordings, sheet music, lyrics, and metadata. Supervised ML relies on the

accessibility of large datasets of annotated data. However, the dataset size can be increased by data augmentation. For

sound, two data augmentation methods may be used: transformation and segmentation. Sound transformation

transforms a music track into a set of new music tracks by applying pitch-shifting, time-stretching, or filtering. For sound

segmentation, one splits a long sound signal into a set of shorter time segments .

In terms of digital CH and its research, the following areas of MIR are relevant:
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Conditions. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 8601–8610.

46. Sarlin, P.-E.; Cadena, C.; Siegwart, R.; Dymczyk, M. From Coarse to Fine: Robust Hierarchical
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1.

2.

Automated music classification utilizes computer algorithms and ML techniques to automatically categorize music

into classes or genres based on features extracted from the music data. Automated music classification has various

applications, such as organizing music libraries and archives, and assisting in music research. Music-related

classification tasks include mood classification, artist identification, instrument recognition, music annotation, and

genre classification. For instance, one study investigates automatic music genre classification model creation using

ML .

Optical Music Recognition (OMR) research investigates how to computationally read music notation in documents

. OMR is a challenging process that differs in difficulty from OCR and handwritten text recognition because of the

properties of music notation as a contextual writing system. First, the visual expression of music is very diverse. For

instance, the Standard Music Font Layout  lists over 2440 recommended characters and several hundred optional

glyphs. Second, it is only their configuration—how they are placed and arranged on the staves and with respect to

each other—that specifies what notes should be played. The two main goals of OMR are:

Recovering music notation and information from the engraving process, i.e., what elements were selected to

express the given piece of music and how they were laid out. The output format must be capable of storing music

notation, e.g., MusicXML  or MEI .

Recovering musical semantics (i.e., the notes, represented by their pitches, velocities, onsets, and durations).

MIDI  would be an appropriate output representation for this goal.

Automatic Music Transcription (AMT) is the process of automatically converting audio recordings of music into

symbolic representations, such as sheet music (e.g., MusicXML or MEI) or MIDI files. AMT is a very useful tool for

music analysis. AMT comprises several subtasks: (multi-)pitch estimation, onset and offset detection, instrument

recognition, beat and rhythm tracking, interpretation of expressive timing and dynamics, and score typesetting. Due

to the very nature of music signals, which often contain several sound sources that produce one or more concurrent

sound events that are meant to be highly correlated over both time and frequency, AMT is still considered a

challenging and open problem .

4.6. AI and Audiovisual Material

Audiovisual heritage includes various materials such as films, videos, and multimedia content. AI for audiovisual

heritage supports various aspects of preserving, analyzing, enhancing, and making accessible audiovisual content of

historical and cultural significance. Key areas of application for AI in audiovisual heritage include:

Digitization and restoration: AI assists in digitizing and restoring deteriorating audiovisual materials, improving

their quality and preserving their historical significance.

Video summaries: Can speed up the process of finding content in audiovisual archives .

Content analysis and knowledge extraction: AI algorithms analyze audio and visual elements within content to

identify patterns, objects, scenes, speakers, and other relevant information. It can also help to spot biases and
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contentious terms and track semantic drift in metadata, supporting curators, cataloguers, and others in deciding on

potentially updating catalog records .

Metadata enhancement: AI enriches metadata for better content organization, search, and context by extracting

keywords or using LLMs to organize and enrich metadata records at scale.

Transcription and translation: AI-powered speech-to-text transcription and translation services make audiovisual

content more accessible and understandable to a wider audience .

Partial audio matching: Supports framing analysis in identifying segments in one source audio file that are identical

to segments in another target audio file. Framing analysis can reveal patterns and biases in the way content is being

recontextualized in the media to shape public discourse .

Cross-modal analysis: AI techniques analyze both audio and visual components of content, facilitating holistic

interpretation and understanding.

Interactive storytelling and content-generation interfaces: AI-powered interactive narratives and documentaries

engage users with historical events and cultural context. AI can further enhance access by using fine-grained and

time-based data extracted by AI systems as a basis for creating “generous interfaces” that allow for the rich

exploration of CH collections  and using conversational speech to provide new ways of interacting with

audiovisual collections .
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