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Billions of tons of agro-industrial residues are produced worldwide. This is associated with the risk of pollution as

well as management and economic problems. Simultaneously, non-edible portions of many crops are rich in

bioactive compounds with valuable properties. For this reason, developing various methods for utilizing agro-

industrial residues (such as sugarcane bagasse and maize residues) as a source of high-value by-products is very

important.

bioactive compounds  antioxidants  agricultural residues

1. Introduction

The agricultural industry generates billions of tonnes of waste from the tillage and processing of various crops. The

crops with the largest amounts of produced residues are rice, maize, soybean, sugarcane, potato, tomato, and

cucumber, as well as some fruits, mainly bananas, oranges, grapes, and apples . It has been estimated that

European food processing companies generate annually approximately 100 Mt of waste and by-products, mostly

during the production of drinks (26%), dairy and ice cream (21.3%), and fruits and vegetables (14.8%) .

In Table 1, the amounts of particular wastes generated worldwide are presented. Many of them are rich in

biologically active compounds and have the potential to become important raw materials for obtaining valuable

phytochemicals. Vegetable and fruit processing by-products are promising sources of valuable phytochemicals

having antioxidant, antimicrobial, anti-inflammatory, anti-cancer, and cardiovascular protection activities . The

applications of these agro-industrial residues and their bioactive compounds in functional food and cosmetics

production were presented in many studies . Moreover, due to the potential health risk of some synthetic

antioxidants such as BHA, the identification and isolation of natural antioxidants from waste has become

increasingly attractive. Important criteria to decide if a product or by-product can be of interest to recover

phytochemicals are the absolute concentration and preconcentration factor, as well as the total amount of product

or by-product per batch .

Table 1. Amount of residues from some crops produced in the world in 2020.
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* based on FAOSTAT, 2022, ** calculated based on the global crop production in 2020 and the residue-to-crop ratio

according to cited references.

2. Sugarcane Bagasse

Large amounts of waste are generated during the processing of sugarcane. In fact, one metric ton of sugarcane

generates 280 kg of bagasse. Sugarcane bagasse is one of the most abundant agro-food by-products and is a

very promising raw material available at low cost for recovering bioactive substances . Sugarcane bagasse

consists mainly of cellulose (35–50%), hemicellulose (26–41%), lignin (11–25%), but also some amount of plant

secondary metabolites (PSM), mainly anthocyanins and mineral substances .

Phenolic compounds are a very important group of natural substances identified in sugarcane waste. Nonetheless,

steam explosion and ultrasound-assisted extraction (UAE) pretreatment was applied for the production of valuable

phenolic compounds from the lignin included in this residue. Chromatographic analysis revealed that sugarcane

bagasse is a good feedstock for the generation of phenolic acids. The concentration of total phenolics with the

Folin-Ciocalteau method was between 2.8 and 3.2 g/L. Zhao et al.  have identified many phenolics, mainly

flavonoids and phenolic acids, in sugarcane bagasse extract (Table 2). The total polyphenol content was detected

Crop Global Crop Production *
[Million Ton]

Residue
to Crop Ratio

Amount
of Residue **
[Million Ton]

References

Sugarcane 1869.7 0.1 189.1 Jiang et al. 

Maize 1162.4 2.0 2324.8 Jiang et al. 

Wheat 760.9 1.18 897.9 Searle and Malins 

Rice 756.7 1.0 756.7 Jiang et al. 

Potato 359.1 0.4 143.6 Ben Taher et al. 

Soybean 353.5 1.5 530.3 Yanli et al. 

Sugar beet 253.0 0.27 68.3 Searle and Malins 

Tomato 186.8 3.5 653.8 Oleszek et al. 

Barley 157.0 1.18 185.3 Searle and Malins 

Banana 119.8 0.6 71.9 Gabhane et al. 

Cucumber 91.3 4.5 410.9 Oleszek et al. 

Apples 86.4 0.25 21.6 Cruz et al. 

Grapes 78.0 0.3 23.4 Muhlack et al. 

Oranges 75.5 0.5 37.8 Rezzadori et al. 

Olives 23.6 0.12 2.8 Searle and Malins 
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as higher than 4 mg/g of dry bagasse, with total flavonoid content of 470 mg quercetin/g of polyphenol. The most

abundant phenolic acids identified in the sugarcane bagasse extract were gallic acid (4.36 mg/g extract), ferulic

acid (1.87 mg/g extract) and coumaric acid (1.66 mg/g extract). Spectroscopic analysis showed that a predominant

amount of p-coumaric acid is ester-linked to the cell wall components, mainly to lignin. On the other hand, about

half of the ferulic acid is esterified to the cell wall hemicelluloses. The purified sugarcane bagasse hydrolysate

consisted mainly of p-coumaric acid. Besides, the purified products showed the same antioxidant activity, reducing

power and free radical scavenging capacity as the standard p-coumaric acid. Al Arni et al.  stated that the major

natural products contained in the lignin fraction were p-coumaric acid, ferulic acid, syringic acid, and vanillin.

Table 2. Phytochemicals derived from sugarcane bagasse.

[27]

Name MW * [g mol ] C H O References

Phenolic acids—hydroxybenzoic acids

p-Hydroxybenzoic acid 138.12 C H O Zheng et al. 

Vanillic acid 168.14 C H O Zheng et al. 

Benzoic acid 122.12 C H O Zheng et al. 

Protocatechuic acid 154.12 C H O Zheng et al. 

Gallic acid 170.12 C H O Zhao et al. 

Syringic acid 198.17 C H O Zhao et al. 

Phenolic acids—hydroxycinnamic acids

p-Coumaric acid 164.04 C H O González–Bautista et al. 

Cinnamic acid 148.16 C H O González–Bautista et al. 

Ferulic acid 194.18 C H O González–Bautista et al. 

Caffeic acid 180.16 C H O González–Bautista et al. 

Chlorogenic acids 354.31 C H O Zhao et al. 

Sinapic acid 224.21 C H O Zhao et al. 

Flavonoids—flavonols

Quercetin 302.24 C H O Zheng et al. 

Flavonoids—flavones

Luteolin 286.24 C H O Zheng et al. 
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* MW—molecular weight.

Gallic, coumaric, caffeic, chlorogenic, and cinnamic acids were the main phenolic compounds extracted from raw

and alkaline pretreated sugarcane bagasse and identified by high-performance liquid chromatography (HPLC) .

The aromatic phenolic compounds (p-coumaric acid, ferulic acid, p-hydroxybenzaldehyde, vanillin, and vanillic

acid) were reported in sugarcane bagasse pith. Five phenolic compounds (tricin 4-O-guaiacylglyceryl ether-7-O-

glucopyranoside, genistin, p-coumaric acid, quercetin, and genistein) in 30% hydroalcoholic fraction of sugarcane

bagasse were identified using ultra-high performance liquid chromatography/high-resolution time of flight mass

spectrometry (UHPLC-HR-TOF-MS); (Table 2). The total phenolic content was 170.68 mg gallic acid/g dry extract

.

Name MW * [g mol ] C H O References

Tricin 330.29 C H O Zheng et al. 

Flavonoid glycosides

Diosmetin 6-C-glucoside 462.40 C H O Zheng et al. 

Tricin 7-O-β-glucopyranoside 492.43 C H O Zheng et al. 

Isoflavone

Genistin 432.37 C H O Zheng et al. 

Genistein 270.24 C H O Zheng et al. 

Others

Catechol 110.11 C H O Zheng et al. 

Phenol 94.11 C H O Zheng et al. 

Guaiacol 124.14 C H O Zheng et al. 

Vanillin 152.15 C H O Zheng et al. 

Isovanillin 152.15 C H O Van der Pol et al. 

Syringaldehyde 182.17 C H O Zheng et al. 

Piceol 136.15 C H O Van der Pol et al. 

Apocynin 166.17 C H O Van der Pol et al. 

Acetosyringone 196.19 C H O Van der Pol et al. 

Syringaldehyde 182.17 C H O Van der Pol et al. 

Creosol 138.16 C H O Lv et al. 

4-Ethylguaiacol 152.19 C H O Lv et al. 

Chavicol 134.17 C H O Lv et al. 

4-Vinylguaiacol 150.17 C H O Lv et al. 

4-Allylsyringol 194.23 C H O Lv et al. 
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Phenolic compounds derived from sugarcane bagasse exhibited many biological activities, which were used in

various applications. The most important biological activities and the newest and most interesting applications have

been summarized in Table 3.

Table 3. Biological activities and potential applications of phytochemicals obtained from sugarcane bagasse.

3. Maize Residues

Material Extract/Compound Biological Activity/Application References

Sugarcane
bagasse

phenolic
compounds

- natural antioxidant
- used in pharmacology

Al Arni et al. 

   

- antibacterial agents against the foodborne
pathogens Escherichia coli, Listeria

monocytogenes, Staphylococcus aureus,
Salmonella typhimurium

Zhao et al. 

 
gallic and tannic

acids
- deactivate cellulolytic and hemicellulolytic

enzymes
Michelin et al. 

  extract

- antioxidant and radical scavenging activity
- antimicrobial activity against Sta-
phylococcus aureus TISTR029 and

Escherichia coli O157:H7
- added value for the sugar industry

Juttuporn et al.

   
- antihyperglycemic ability

- useful therapeutic agents to treat T2D patients
Zheng et al. 

    - used for the low-cost bio-oil production
Treedet and

Suntivarakorn 

    - feedstock for ethanol (bioethanol) production
Krishnan et al.

Zhu et al. 

   
- raw material for the production of industrial

enzymes, xylose, glucose, methane
Guilherme et al.

   
- raw material for the production of xylitol and

organic acids
Chandel et al. 

    - used to prepare highly valued succinic acid Xi et al. 

   
- used as a reducing agent in synthesizing

biogenic platinum nanoparticles
Ishak et al. 

    - used as a fuel to power sugar mills Mohan et al. 
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Maize (corn Zea mays L.) bran, husk, cobs, tassel, pollen, silk, and fiber are residues of corn production. They

contain substantial amounts of phytochemicals, such as phenolic compounds, carotenoid pigments and

phytosterols  (Table 4).

Table 4. Phytochemicals identified in corn waste.

[39]

Name MW [g mol ] Molecular Formula References

Phenolic acids—hydroxycinnamic acids

p-Coumaric acid 164.04 C H O Guo et al. 

Ferulic acid 194.18 C H O Guo et al. 

trans-ferulic acid 194.18 C H O Guo et al. 

trans-ferulic acid methyl ester 208.21 C H O Guo et al. 

cis-ferulic acid 194.18 C H O Guo et al. 

cis-ferulic acid methyl ester 208.21 C H O Guo et al. 

Flavonoids—flavonols

Rutin 610.52 C H O Bujang et al. 

Quercetin-3-O-glucoside 463.37 C H O Dong et al. 

Isorhamnetin-3-O-glucoside 478.41 C H O Dong et al. 

Kaempferol-3-O-glucoside 447.37 C H O Li et al. 

Maysin 576.50 C H O Haslina and Eva 

Isoorientin-2″-O-α-l-rhamnoside 594.50 C H O Haslina and Eva 

Maysin-3′-methyl ether 590.50 C H O Tian et al. 

ax-4″–OH–3′-Methoxymaysin 592.50 C H O Tian et al. 

2″-O-α-l-Rhamnosyl-6-C-fucosylluteolin 578.50 C H O Tian et al. 

Flavonoids—anthocyanins

Pelargonidin-3-O-glucoside 433.40 C H O Lao and Giusti 

Pelargonidin-3-(6″malonylglucoside) 519.23 C H O Chen et al. 

Cyanidin-3-O-glucoside 449.39 C H O Barba et al. 
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28 32 14
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24 23 13
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Corn bran is produced as a plentiful by-product during the corn dry milling process. Similar to other cereal grains,

phenolics in corn bran exist in free insoluble bound and soluble-conjugated forms. Corn bran is a rich source of

ferulic acid compared to other cereals, fruits and vegetables. Guo et al.  isolated four forms of ferulic acid and its

derivates from corn bran. On the other hand, it has been reported that the hexane-derived extract from corn bran

contains high levels of ferulate-phytosterol esters, similar in composition and function to oryzanol.

Another corn waste is a husk. It is the outer leafy covering of an ear of Zea mays L. The main constituents of the

maize husk extracts determined in various phytochemical studies are phenolic compounds, e.g., flavonoids .

Saponins, glycosides, and alkaloids are present mainly in the aqueous and methanolic extracts, while phenols and

tannins are numerous in methanolic ones . Moreover, corn husk has high contents of anthocyanins . Simla

et al.  reported that anthocyanins concentration in corn husks ranges from 0.003 to 4.9 mg/g. The major

anthocyanins of corn husk were identified as malonylation products of cyanidin, pelargonidin, and peonidin

derivatives .

Important by-products of the corn industry are cobs. For every 100 kg of corn grain, approximately 18 kg of corn

cobs are produced. Corn cob is one of the food waste-material having a phytochemical component that has a

healthy benefit . They contain cyanidin-3-glucoside and cyanidin-3-(6″malonylglucoside) as main anthocyanins,

as well as pelargonidin-3-glucoside, peonidin-3-glucoside and their malonyl counterparts .

Corn tassel is a by-product from hybrid corn seed production and an excellent source of phytochemicals (the

flavonol glycosides of quercetin, isorhamnetin and kaempferol) with beneficial properties . In Thailand, purple

waxy corn is considered a special corn type because it is rich in phenolics, anthocyanins, and carotenoids in the

tassel . Besides, corn tassels could be considered a great source of valuable products such as volatile oils.

Corn pollen is another corn waste. Significant amounts of phytochemicals, including carotenoids, steroids, terpenes

and flavonoids, are present in maize pollen . Bujang et al. (2021) showed that maize pollen contains a high total

phenolic content and total flavonoid content of 783.02 mg gallic acid equivalent (GAE)/100 g and 1706.83 mg

quercetin equivalent (QE)/100 g, respectively. The flavonoid pattern of maize pollen is characterized by an

accumulation of the predominant flavonols, quercetin and traces of isorhamnetin diglycosides and rutin. According

to Žilić et al. , the quercetin values in maize pollen were 324.16 μg/g and 81.61 to 466.82 μg/g, respectively.

Name MW [g mol ] Molecular Formula References

Cyanidin 3-(6″-malonylglucoside) 535.11 C H O Fernandez-Aulis et al. 

Peonidin-3-O-glucoside 463.41 C H O Barba et al. 

Peonidin-3-(6″malonylglucoside) 549.50 C H O Fernandez-Aulis et al. 

Other compounds

p-Hydroxybenzaldehyde 122.12 C H O Guo et al. 

β-Sitosterol glucoside 576.85 C H O Guo et al. 

Indole-3-acetic acid 175.06 C H NO Wille and Berhow 

Vanillin 154.05 C H O Guo et al. 

−1
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Corn silk, another by-product from corn processing, contains a wide range of bioactive compounds in the form of

volatile oils, steroids, saponins, anthocyanins , and other natural antioxidants, such as flavonoids  and

phenolic compounds . In the corn silk powder, the high phenolic content (94.10 ± 0.26 mg GAE/g) and

flavonoid content (163.93 ± 0.83 mg QE/100 g) are responsible for its high antioxidant activity . About 29

flavonoids have been isolated from corn silk. Most of them are C-glycoside compounds and have the same parent

nucleus as luteolin . Ren et al.  successfully isolated and separated compounds such as 2″-O-α-l-rhamnosyl-

6-C-3″-deoxyglucosyl-3′-methoxyluteolin, ax-5′-methane-3′-methoxymaysin, ax-4″-OH-3′-methoxymaysin, 6,4′-

dihydroxy-3′-methoxyflavone-7-O-glucoside, and 7,4′-dihydroxy-3′-methoxyflavone-2″-O-α-l-rhamnosyl-6-C

fucoside from corn silk. Moreover, among flavonoids, Haslina and Eva  determined in corn silk: apigmaysin,

maysin, isoorientin-2″-O-α-l-rhamnoside, 3-methoxymaysine, and ax-4-OH maysin.

This richness of biologically active compounds results in advantageous properties and applications. The most

important properties and the newest studies on the application are listed in Table 5.

Table 5. Biological activity and potential applications of phytochemicals obtained from corn wastes.

[59] [52]

[41][58][59]

[60]

[44] [61]

[43]

Material Extract/Compound Biological Activity/Application References

Corn
bran

tocopherols and
polyphenolic
compounds

- antioxidant properties
- used as bioactive compounds in cosmetics or natural

substitutes (antioxidants, preservatives, stabilizers,
emulsifiers, and colorings) in foods to prevent potential

adverse effects associated with the consumption of
artificial ingredients

Galanakis

Corn
husk

extract
- used in the treatment of diabetes because it has shown

high:
- antidiabetic potential

Brobbey et
al. 

    - anti-inflammatory effects
Roh et al.

Corn
stigma

extract

- antifungal and antibacterial activities against 23 of the
studied microorganisms

- use as a functional ingredient in the food and
pharmaceutical industry

Boeira et al.

Corn
tassel

extract

- used as a traditional medicine in China
- antioxidant capacity

- the high ability to inhibit the proliferation of MGC80-3
gastric cancer cells

Wang et al.

  tasselin A
- inhibition of melanin production

- used as an ingredient in skin care whitener
Wille and

Berhow 

Corn
pollen

phenolic compounds - antiradical activity
Bujang et

al. 
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