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Gynogenesis is a viable methodology with promising results in recalcitrant species for the generation of doubled

haploids, which uses unpollinated female gametophytes. This technique has been successful in loquat (Eriobotrya

japonica (Thumb) Lindl.), citrus (Citrus grandis (L.) Osbeck), spinach (Spinacia oleracea L.), cucurbits, red beet

(Beta vulgaris L.) and Gentiana ssp. crops, where it is feasible to apply this technique in breeding.
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1. Gynogenesis in Agricultural Crops

Haploid regeneration by means of unpollinated female gametophytes is one of the most commonly used

alternatives in species where androgenesis has not been effective; this method is called haploid gynogenesis or

haploid parthenogenesis. The term gynogenic haploid regeneration is used for all haploid induction methods in

which a female gametophyte is used as the origin of the haploid cells, regardless of whether it is a

pseudofertilization process or not; therefore, there are four variants: (a) in vitro culture of unfertilized ovaries or

ovules , (b) pollination with pollen irradiated with cobalt-60 ( Co) , (c) wide hybridization  and (d) in vivo

haploid inducers .

1.1. In Vitro Culture of Ovaries or Ovules

In the case of self-pollinated species, in vitro culture of unfertilized female gametes is achieved by culturing flower

buds prior to anthesis, while in male-sterile or self-incompatible plants it is performed at any stage of ovule

development, since they show a favorable response to gynogenic induction . This technique is successfully

employed in species of the genus  Allium, where it is the main technique to derive DHs . For example,

Panahandeh et al.  achieved a gynogenic induction range of 5 to 12% by culturing unpollinated flower buds

of Allium hirtifolium Boiss., which allowed callus formation with a success rate of 20%, of which the efficiency of

obtaining haploid plants was 70 to 77%. This technique is also viable in both wild and improved species of the

genus  Gentiana  L. spp. . Although the results obtained were promising in both species mentioned, the

authors agree that it is necessary to continue with the establishment of efficient protocols because the average

response in obtaining haploid plants does not exceed 5% (Table 1).

Table 1. Examples of protocols used for successful haploid induction mediated in vitro culture of unfertilized

ovaries or ovules.
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1.2. Irradiated Pollen

Irradiated pollen allows the development of haploid embryos by fertilizing an ovule with mature pollen whose

genetic material is inactive, i.e., it is capable of inducing cell divisions in the ovule and the normal development of

the embryo . There are many favorable examples involving the use of irradiated pollen in different vegetable and

fruit species in which androgenesis was not an option (Table 2).

Table 2. Examples of successful haploid induction methods by induced parthenogenesis by irradiated pollen in

recalcitrant species.

Species Common
Name Pathway Ploidy Level

Determination

Haploid
Induction

Rate
Reference

Beta vulgaris L. Red beet
Unfertilized

ovule culture

Flow cytometry and
chromosome

counting
25%

Zayachkovskaya
et al. 

Gentiana spp. Gentians
Unfertilized

ovule culture

Flow cytometry and
molecular marker

analysis
32.5% Takamura et al. 

Allium
hirtifolium Boiss

Persian
shallot

Unfertilized
ovary

Squash root 0–77%
Panahandeh et al.

Gentiana triflora Gentians
Unfertilized

ovules
Flow cytometry and

Feulgen staining
23.5–56% Doi et al. 

Solanum
lycopersicum L.

Tomato
Non-fertilized
ovary culture

- 0% Bal et al. 

[11]

[8]
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[10]

[12]

[2]

Species Common
Name Pathway Ploidy Level

Determination

Haploid
Induction

Rate
Reference

Eriobotrya
japonica (Thunb.)

Lindl.
Loquat

γ–irradiated
pollen

Flow cytometry
0.007–
0.008%

Blasco et al.

Citrus grandis (L.)
Osbeck

Pummelo
γ–irradiated

pollen
Flow cytometry 1%s

Wang et al.

Spinacia oleracea L. Spinach
γ-irradiated

pollen
Flow cytometry - Keleş et al. 

Cucumis melo L. Melon
γ-irradiated

pollen
Flow cytometry 14–33% Lotfi et al. 

Cucumis melo L. Melon
γ-irradiated

pollen
Chromosome

counting
23.65%

Nasertorabi et
al. 
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Thus, Hooghvorst et al.  and Kurtar et al.  reported that in cucurbits, a family containing crops of high

economic value such as pumpkin, melon and cucumber, pollination with γ-ray-irradiated pollen is the most efficient

method to induce haploidy because it has not been possible to take advantage of androgenesis in these crops.

In  Cucumis melo  L., pollen irradiated with 250 Gys of  Cs was more effective compared to in vitro culture of

unpollinated ovules . Likewise, Nasertorabi et al.  obtained 48 Cucumis melo L. plants induced from embryos

obtained with pollen irradiated with 550 Gys of  Co, of which 94% were haploid.

In citrus, this technique has proven to be very useful to obtain haploid plants with high value for breeding. For

example, Wang et al.  were able to induce haploid plants in Citrus grandis L. Osbeck by irradiating pollen with γ-

rays with doses lower than 500 Gys and in vitro culture of immature embryos. Likewise, Jedidi et al. , by

irradiating pollen at 250 Gys with γ-rays, obtained seven seedlings that were used to generate homozygous lines

in Citrus reticulata Blanco.

1.3. Wide Hybridization

The third variant of gynogenesis consists of interspecific crosses, through which it is possible to induce the

formation of haploid embryos due to the fertilization of an ovule with pollen from a distant species, allowing double

fertilization. However, cell divisions in the zygote eliminate the chromosomes of the male parent . Thus, Santra

et al.  published an efficient protocol to obtain completely homozygous lines in only two years by wide

hybridization to obtain DHs from wheat pollinated with maize pollen.

Although wide hybridization is most commonly used in cereals, in recent years its application in leafy vegetables

has been shown to have acceptable results in the induction of haploid plants (Table 4). For example, Piosik et al.

 carried out distant hybridization of Lactuca sativa L. with Helianthus annus L. and Helianthus tuberosus L., with

which they established an effective methodology to induce haploidy in lettuce. In addition, Wei et al.  obtained

haploid offspring by embryo rescue and subsequent duplication of chromosomal material with colchicine using a

commercial variety of  Brassica oleracea  var.  alboglabra  as the male parent and a variety of  Brassica

rapa var. parachinensis as the female parent. Similarly, haploid plants were obtained by crossing Brassica rapa ×

Brassica oleracea and in vitro culture of immature embryos .

Table 3. Summary of haploid induction methodologies by wide hybridization.

Species Common
Name Pathway Ploidy Level

Determination

Haploid
Induction

Rate
Reference

Citrus reticulata Mandarin
γ-irradiated

pollen
Flow cytometry 2.58–8.33%

Jedidi et al.
[18][3] [19]

137

[16] [17]

60

[14]

[18]

[2][20]

[21]

[22]

[23]

[24]

Species Common
Name Pathway Ploidy Level

Determination

Haploid
Induction

Rate
Reference

Triticum
aestivum L.

Wheat Wheat × maize crossing - -
Wiśniewska

et al. [25]
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1.4. In Vivo Haploid Induction

In the past decade, methodologies applied to induce in vivo haploidy to accelerate the production of double haploid

lines have been developed for several target crops . These methodologies take advantage of the specific gene

expressions that regulate the formation of maternal haploids (Table 4). In maize, the generation of in vivo haploid

inducer lines of maternal haploidy via the expression of the genes  MATL  ,  NLD   and  ZmPLA1  has been

possible . In wheat, the genetic edition of the gen  MTL  permitted to observe that the alleles  mtl-AD,  mtl-

BD  and mtl-ABD were effective to generate inducer lines from self-pollinated and cross-pollinated progenies; its

rate of success ranged between 7.8% and 15.6% . However, these genes do not work in dicot species . On

the other hand, the haploid induction from aneuploidy is possible via CRISPR/Cas9 mutation of the CENH3 gene in

both monocot and dicot crops . These two methodologies are very promising and are used in cereals because

they have been more efficient than the in vitro methods.

Table 4. Summary of haploid induction reports via in vivo haploid inducers.

Species Common
Name Pathway Ploidy Level

Determination

Haploid
Induction

Rate
Reference

Lactuca sativa L. Lettuce
Cross-pollination

with Helianthus annus L.

Flow cytometry
and chromosome

counting
15%

Piosik et al.

Lactuca sativa L. Lettuce
Cross-pollination
with Helianthus

tuberosus L.

Flow cytometry
and chromosome

counting
16%

Piosik et al.

Solanum
lycopersicum L.

Tomato
Cross-pollination with S.

sisymbriifolium Lam.
Chromosome

counting
0% Bal et al. 

Solanum
lycopersicum L.

Tomato
Cross-pollination with S.

sisymbriifolium Lam.

Flow cytometry
and chromosome

counting

~10% cells
haploids

Chambonnet

[22]

[22]

[26]

[27]

[3][28]

[29] [30]

[31]

[32] [33]

[3][28]

Species Common
Name Pathway Ploidy Level

Determination

Haploid
Induction

Rate
Reference

Zea mays L. Maize Inducer inbred lines
Morphological

markers
2.5–

15.7%
Qu et al.

Zea mays L. Maize BHI Bulk
Embryo

coloration (R1-
nj)

11.2–
16.8%

Trampe et
al. 

Zea mays L. Maize
Frame-shift mutation

in MATRILINEAL (MTL)
Flow cytometry 6.7%

Kelliher et
al. 

Zea mays L. Maize
Eliminate native CENH3-

gene
Flow cytometry

0.05–
0.31%

Kelliher et
al. 

[34]

[35]

[29]

[4]
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In contrast, the conservation of the  DMP  genes in dicot species opens up the possibility to apply this haploidy

induction system . From this starting point, protocols for some horticultural crops have been developed.

In  Brassica napus  L.,  bnaDMP  mutation could induce amphihaploidy . In  Nicotiana tabacum  L., it was

reported that the simultaneous MtDMP1, MtDMP2 and MtDMP3 mutations can trigger maternal haploidy at rates

from 1.52% to 1.75% . In contrast, the inactivation of the  MtDMP8  and  MtDMP9  alleles in  Medicago

truncatula  Gaertn would facilitate in vivo maternal haploid induction at a rate from 0.29% to 0.82% in mutant

progeny . Despite these results, the use of  DMP  genes is not very frequent because there are not

transformation systems (CRISPR/Cas9) or TILLING populations in major crops .

2. Gynogenesis in Tomato

Due to the few successful results obtained by androgenesis for haploidy induction and the formation of doubled

haploids in tomato, some research groups have sought alternatives to achieve this goal. The options employed are

variants of gynogenesis: wide hybridization, unfertilized ovule culture and irradiated pollen ; and haploid

inducers/CRISPR/Cas9 ; however, it is not yet fully known what these could mean for the breeding of this crop.

2.1. Wide Hybridization

Species Common
Name Pathway Ploidy Level

Determination

Haploid
Induction

Rate
Reference

Zea mays L. Maize
Inducer lines (NOT LIKE

DAD)
Morphological

markers
0–3.59%

Gilles et
al. 

Triticum
aestivum L.

Wheat
Edited the MTL alleles
using CRISPR/Cas9

Chromosome
counting

0–15.6%
Tang et al.

Arabidopsis
thaliana Arabidopsis

Edited the DMP genes
using CRISPR/Cas9

Flow cytometry 0–4.41%
Zhong et

al. 

Brassica napus L.
Oilseed

rape
Knocked out of BnaDMP

using CRISPR/Cas9
Flow cytometry

1.5
+-0.63%

Li et al.

Brassica napus L.
Oilseed

rape
DMP CRISPR/Cas9

mutagenesis
Flow cytometry 0–4.44%

Zhong et
al. 

Nicotiana
tabacum Tobacco

DMP CRISPR/Cas9
mutagenesis

Flow cytometry 0–1.63%
Zhong et

al. 

Nicotiana
tabacum Tobacco

DMP CRISPR/Cas9
mutagenesis

Flow cytometry
and cytological

observation

1.52–
1.75%

Zhang et
al. 

Medicago
truncatula Gaertn

Barrel
medic

DMP CRISPR/Cas9
mutagenesis

Flow cytometry
0.29–
0.82%

Wang et
al. 

Solanum
lycopersicum L.

Tomato
DMP CRISPR/Cas9

mutagenesis
Flow cytometry 0.5–3.7%

Zhong et
al. 

Solanum
lycopersicum L.

Tomato
Edition of the CENH3 gen

with GFP-tailswap
disruption

Flow cytometry 0.2–2.3%
Op Den
Camp et

al. 
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Wild species phylogenetically related to tomato are commonly used for crop improvement to incorporate alleles of

interest into crop breeding programs, most notably S. pimpinellifolium  , S. arcanum Peralta , S. sitiens I. M.

Johnst , S. pinnelli L. , S. chilense  (Dunal) Reiche , S. neorickii D. M. Spooner, G. J. Anderson & R. K.

Jansen , S. habrochaites S. Knapp & D. M. Spooner  and S. sisymbriifolium Lam. .

The general use of wide crosses in this species is not only performed to induce haploidy, as some studies have

attempted to apply them to generate DHs (Table 4). For example, S. sisybriifolium pollen was used unsuccessfully

to induce haploids . In contrast, S. sisybriifolium pollen allowed obtaining haploid and di-haploid genotypes of

maternal origin.

Even though only ~10% of embryos were rescued and only two plants were generated, the results suggest that it

may be a viable alternative; however, the author suggests that the procedure needs to be modified to improve

results .

2.2. Unfertilized Ovule Culture

Few attempts have been made to obtain haploid tomato plants by in vitro culture of unfertilized ovules (Table 2). In

tomato, this objective was not possible despite the fact that ovules have a variable response to different culture

media . Moreover, Zhao et al.  designed a very efficient in vitro protocol with which they isolated, from a

single ovary in tomato, between 100 and 150 ovules with which they were able to induce gynogenic callus; despite

this, they were unsuccessful in regenerating haploid plants.

2.3. Irradiated Pollen

Regarding the use of irradiated pollen in tomato, the work carried out is limited, although the results are promising

(Table 3). Thus, Nishiyama et al.  reported that S. pimpinellifolium pollen maintains its germination capacity and

that it is possible to generate fruits with some seeds with doses of 2000 to 7000 Gys of X-rays. In addition,

Nishiyama et al. , when applying between 100 and 1100 Gys in increments of 100 Grays with X and γ radiation

to S. pimpinellifolium pollen, found that it has the same effect on germination and fruit set, with a pollen germination

capacity of less than 50% with doses higher than 300 Gys. These studies suggest the possibility of obtaining

tomato fruits and seeds from irradiated pollen, although the doses used did not allow inactivating the genetic

material of the microspore and inducing haploid parthenogenesis. However, the success of this technique obtained

in other crops allows people to assume that it is essential to determine the median lethal dose (LD ), which could

vary according to the genotype and species .

For this methodology to be used in tomato breeding programs for haploidy induction, the optimum dose for the

inactivation of genetic material in pollen must be determined. In recent years, Akbudak et al.  irradiated pollen

from different tomato hybrids with doses of 100, 200, 300 and 400 Gys of γ-rays without obtaining fruit in any

treatment although radiation doses higher than 200 Gys correspond to LD50. Likewise, Bal et al.  mentioned

their own unpublished work on haploidy induction in this crop using irradiated pollen, where 1000 Gys caused the

[43] [44]

[45] [46] [47]

[48] [49] [50]

[26]

[27]

[12] [51]

[52]

[53]

50

[1][54]

[55]

[42]
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loss of viability and germination capacity of the pollen; however, with 800 Gys, fruits were generated, which were

aborted in the early stages of development.

2.4. In Vivo Haploid Inducers

In tomato, the use of CRISPR/Cas9 has been applied to achieve objectives such as introgression breeding ,

plant architecture, fruit development and ripening , herbicide-resistance , leaf development  and ToBRFV-

resistant tomato . This suggests that it is possible to generate protocols to use the DMP and CENH3 genes that

regulate the gynogenesis to facilitate the generation of maternal haploid inducer males, as reported in maize 

 and wheat . Thus, Zhong et al.  obtained sldmp tomato mutants using CRISPR/Cas9, with a rate of 1.9%

for haploidy induction. Likewise, KEYGENE N. V. (Wageningen, Netherlands) has a patent for a methodology to

generate haploids via GFP-tailswap disruption that by editing the CENH3 gene produces 0.5–2.3% of haploids .

These achievements produced by genetic edition show the potential of the in vivo haploid inducers to obtain DH

lines in tomato and other recalcitrant crops.
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