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Accurately estimating the pose of a vehicle is important for autonomous parking. The study of around view monitor

(AVM)-based visual Simultaneous Localization and Mapping (SLAM) has gained attention due to its affordability,

commercial availability, and suitability for parking scenarios characterized by rapid rotations and back-and-forth

movements of the vehicle. 
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1. Introduction

One of the important technologies for the commercialization of fully autonomous parking is to accurately estimate

the pose of the vehicle. Simultaneous Localization and Mapping (SLAM) technology has been developed for

localizing the vehicle . Recently, visual SLAM , which utilizes cameras as the main sensor, has demonstrated

significant advancements in autonomous vehicles, wherein a front camera is commonly employed to estimate the

vehicle pose by detecting changes in feature locations or intensity variations of pixels within the image . However,

visual SLAM based on a front camera is less suitable for parking scenarios due to the narrow field of view (FOV) of

the sensor and a motion bias problem  in which the performance of SLAM in forward and backward motion is

different.

Instead of a front camera, an around view monitor (AVM) has been also investigated for its application to

autonomous parking in visual SLAM. AVM provides a bird’s eye view image using cameras facing in four different

directions. Many studies  have applied AVM-based visual SLAM to parking scenarios by taking advantage of

wide FOV and no motion bias. These studies have used road-marking information as semantic features to avoid

the deformation caused by Inverse Perspective Mapping (IPM). However, inaccurate pose estimation occurs due to

AVM distortion error caused by uneven ground and inaccurate camera calibration.

Despite the fact that numerous approaches  have been explored to achieve accurate bird’s eye view

images, they still exhibit several limitations, including limited quantitative comparison between features observed in

AVM and features in real-world environments and substantial efforts for collecting data. Alternatively, in , they

avoided the influence of distortion errors by utilizing an additional Inertial Measurement Unit (IMU) sensor based on

a pre-built map or leveraging an externally provided High Definition (HD) vector map. The approach of  attempted
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to create an accurate map in real-time using the sliding window fusion technique without additional information, but

it exhibited insufficient accuracy in pose estimation for autonomous parking.

2. Visual SLAM

2.1. Front-Camera-Based Visual SLAM

In the field of visual SLAM, there are various methods using a front camera as the main sensor. These can be

broadly categorized into direct and feature-based methods. Direct methods use the raw image, while feature-based

methods use only features in the image. Representative direct methods of visual SLAM include Direct Sparse

Odometry (DSO), which estimates camera pose by minimizing the pixel intensity difference between two images

. ORB-SLAM2  is a well-known feature-based method that estimates camera pose by minimizing the distance

difference between matched feature points. Another method, Semi-direct Visual Odometry (SVO), combines the

advantages of both direct and feature-based methods . However, these methods are not suitable for

autonomous parking. A front camera with a narrow FOV can have challenges detecting changes in the surrounding

environment of a vehicle during rapid rotation. Moreover, depth estimation in these methods causes a difference in

SLAM performance between forward and backward motion .

2.2. AVM-Based Visual SLAM

Various SLAM studies have proposed utilizing AVM as the main sensor for autonomous parking. Autonomous valet

parking-SLAM (AVP-SLAM)  estimates the pose of the vehicle by matching current road-marking features with a

road-marking map created in the preceding process. AVP-Loc  matches current road-marking features to an HD

vector map of a parking lot for vehicle localization. In , the edge information of both free space and road markings

are utilized as input features to estimate the pose of a vehicle using Iterative Closest Point (ICP) . However, the

AVM distortion error was not taken into account in these studies. In , the inherent inaccuracies caused by the

distortion error in the pre-built map necessitated an additional IMU to enhance the localization accuracy. The

method of  employed an externally provided HD vector map to avoid distortion errors. Although the approach in 

aimed to create an accurate map in real-time using the sliding window fusion technique without additional

information, the construction of maps that include distortion errors negatively affects the localization performance of

autonomous vehicles.

3. AVM Image Enhancement Techniques

3.1. AVM Image Modification Using Automatic Calibration

Several methods have been proposed for the automatic calibration of AVM images, utilizing extracted feature

shapes to achieve accurate bird’s eye views. In , a method was proposed to estimate the extrinsic parameters of

four AVM cameras using point patterns. The method proposed in  aims to calibrate an AVM image by matching

the gradient and position of the lane observed from the front and rear cameras with that seen from the left and right
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cameras. On the other hand, the method proposed in  focuses on calibrating the AVM image to ensure the

detected parking lines are parallel or perpendicular to the vehicle. However, since these methods only perform

relative comparisons between the images of each camera and do not quantitatively compare the AVM image with

the real environment, it may not be considered as a complete solution to address AVM distortion errors.

3.2. AVM Image Generation Using Deep Learning

In recent years, there has been a shift towards deep learning-based AVM image generation methods that use

Neural Networks (NN) as viewpoint transformation functions, instead of using homography geometric information.

HDMapNet  uses a Multilayer Perceptron (MLP) to convert each camera image from AVM into a bird’s eye view,

and then creates an AVM image through an attaching process using installed camera locations. Another method,

BEVformer , uses the Transformer model to create an AVM image without an additional attaching process.

However, these methods require a large amount of training data.

To estimate the vehicle pose without the need for pre-map construction or additional sensors, the algorithm of the

Hybrid Bird’s-Eye Edge-Based Semantic Visual SLAM  is selected. Instead of using the method directly, it was

modified in two aspects to improve the pose estimation performance. First, parking line information is utilized as

input data instead of edge information from semantic features and free space. Second, Generalized ICP  is used

instead of ICP for pose estimation. GICP is a pointcloud registration algorithm developed from ICP that addresses

inaccurate correspondences. The modified Hybrid Bird’s-Eye Edge-Based Semantic Visual SLAM is used to

examine the impact of distortion errors, resulting from inaccurate AVM calibration, on the performance of AVM-

based SLAM.
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