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Non-contact vital signs monitoring using microwave Doppler radar has shown great promise in healthcare
applications. Recently, this unobtrusive form of physiological sensing has also been gaining attention for its
potential for continuous identity authentication, which can reduce the vulnerability of traditional one-pass validation
authentication systems. Physiological Doppler radar is an attractive approach for continuous identity authentication
as it requires neither contact nor line-of-sight and does not give rise to privacy concerns associated with video
imaging.

Radar Identity authentication Non-contact sensing

| 1. Introduction

Doppler radar has been used in widespread applications, including weather forecasting, vehicle speed
measurement, structural health monitoring, and the monitoring of air and sea traffic [1l. This technology has most
recently been recognized for promise in healthcare applications though long term unobtrusive physiological
monitoring [ZIEIMEIE The fundamental Doppler principle is illustrated in Figure 1a, where a reflected signal
undergoes a phase shift due to the subtle movement of the chest surface caused by heartbeat and respiration 42!
[BII7I81, Doppler radar remote life sensing of humans has been widely reported, with proof of concepts demonstrated
for various applications & This non-contact and non-invasive form of measurement has several potential
advantages in medicine, especially for the monitoring of neonates or infants at risk of sudden infant death
syndrome B adults with sleep disorders 2% and burn victims 112 |n addition, separation of respiratory
signatures in a multi-subject environment has also been investigated [L2I14I151116] \Moreover, this form of respiration
monitoring reduces patient discomfort and distress as electrodes need not be attached to the body. The inherent
advantage of this unobtrusive non-contact measurement technique broadens potential applications beyond
healthcare to include occupancy sensing 17 and related energy management in smart homes (819 and baby

monitoring 29,
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Figure 1. Basic principle of Doppler radar physiological sensing (a), and non-contact continuous identity
authentication concept (b). A radar system typically consists of a transmitter and a receiver. When a transmitted

signal of frequency w is reflected its phase changes, ¢ (f), in direct proportion to the subtle motion.

Growing interest in physiological motion sensing through radar has led to the development of new front-end
architectures 292 paseband signal processing methods 22, and system-level integration (2123l to improve
detection accuracy and robustness [24l. A review of recent advances in Doppler radar sensors has been reported
by Li et al. 22, One example is the application of this non-invasive technology to monitor infants for sudden infant
death syndrome (SIDS) 281271 which is one of the leading causes of infant mortality. Moreover, Doppler radar has
also been implemented to monitor the health and behavior of terrestrial and aquatic animals (28129801 Sleep
monitoring is another emerging application where radar alleviates the measurement interference introduced by the
conventional use of obtrusive devices such torso straps and or spirometers 31, A clinical study was performed to
comparatively monitor patients suffering from sleep apnea using a radar sensor in conjunction with traditional
intrusive sleep monitoring equipment, where the radar was found to provide stand-alone detection of most apnea
events, as well as complementary detail to facilitate conventional diagnostics 1. Furthermore, Food and Drug
Administration (FDA) approval for the first commercial use of wireless, non-contact respiratory devices in the
Unites States was granted in 2009 2],

Beyond health sensing, Doppler radar also holds great promise to enhance system security and privacy,
particularly in the area of user authentication as illustrated in Figure 1b. Existing system authentication methods
predominately employ a one-off, interruptive approach, which authenticates only at the initial log-in of a session [
[34135](36] \with users actively engaging an input device or biometric reader. Such designs are vulnerable to open
session exploitations and may interfere with user activity. There have been many studies focused on continuity in
user authentication. Several have explored sensing technologies to acquire common physiological traits, including
fingerprint B2, palm print 8, and iris 32, used to monitor and authenticate users throughout a session. Recent
advancements in wearable sensors and pattern recognition further enable system architects to collect more subtle
physiological patterns, such as those associated with electroencephalogram (EEG) 49, finger-vein (41, and gait [42],
to verify users implicitly and continuously. Compared to these contact-based solutions, continuous authentication
using non-contact, unobtrusive techniques, such as Doppler radar, can further improve system usability and
expand the range of applications into domains with known privacy concerns 4344l For example, various visible
and thermal-based cameras are employed to acquire face and gait features for user verification 2248147 However,

image-based approaches suffer from several irreconcilable dilemmas, including a lack of privacy and degraded
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performance under a low light ambient conditions 4849l Alternatively, a solution leveraging unobtrusive radar
measurement of cardiopulmonary motion can be immune to such deficiencies and achieve consistent and reliable
recognition under privacy-sensitive conditions [42I50511[52][53][54]

| 2. Radar-based Continuous Identity Authentication Research

Identity authentication using microwave Doppler radar is gaining attention as it can add an extra layer of security to
the vulnerable traditional one-pass validation approach (e.g., fingerprint, password, and facial/iris) 2. Pattern
recognition and unique identification are always challenging for this non-contact technology because of variations
in human breathing patterns due to physical activity and emotional stress 23, As future big data analyses emerge
and machine learning algorithms improve, Doppler radar-measured physiological signals can be turned into

increasingly useful data and knowledge 281, In particular, diverse respiratory motion patterns have good potential to
be used as biometric identifiers [S8I64I65](661[67][68](69)[70][71](72]

Identity theft continues to pose everyday challenges for consumers and the associated threat is increased as
traditional identity authentication systems are targeted 28189 Traditional identity authentication methods, such as
fingerprint, password, and facial recognition, all require an initial spot check at the start of user session, which
potentially conveys personal information like bank account, social security number, and credit card and social
networking account details 72, In 2018, over 14 million people were victims of identity fraud in the United States
(691 |dentity fraud can be significantly reduced by implementing multi-factor authentication systems, which can be

further enhanced through integration of unobtrusive continuous radar-based identity authentication 28],

In this section, radar-based sensing authentication is categorized in two different ways, based either on breathing-
related features, or heart-based features. Breathing motion is generally periodic, and respiratory-related features
can be extracted from the time domain signature of the reflected phase signal and rate information extracted by
performing an FFT MR8 Heartbeat motion is modulated on top of respiratory motion and the larger resulting
breathing signal is dominant over the heartbeat signal (4. This leads to a classical problem in FFT, where the
stronger signal at given frequency leaks into other frequencies and can mask a weaker signal at nearby
frequencies Bl Generally, the radar captured signal is filtered outside the 0.005-0.5-Hz frequency band for
extracting respiration information and 0.8—2 Hz for extracting heartbeat-related information. All the All the radar
authentication research cited in this paper is focused on extracting two separate distinguishable features, based on
either respiration or heartbeat. Extracting both simultaneously has the potential for stronger authentication;
however, such a process may increase computational complexity. Table 1 provides a summary of published work
on radar-based non-contact continuous identity authentication considered in this paper. In the next two
subsections, details are provided on these two different unique features (breathing and heart, respectively),
including related identification demonstrations along with associated challenges for further development. There
have also been attempts to use Doppler modulation of WiFi signals to authenticate people and this research is

described in the third subsection.

Table 1. Systematic review on radar-based non-contact continuous identity authentication.
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Reference Year
of Publication

Hardware (RF
Frequency)

Identification Features

Outcome

2 A, Rahman et
al., 2016

2.4 GHz Doppler
Radar

« Respiration-based

o Power

o spectral density

o Packing density

o Inspiratory time

Accuracy: 90%

Neural network classifier

Participants: 3

58] E Lin et al.,
2017

2.4 GHz Doppler
Radar

e Heart-based dynamics

o Cardiac-motion cycle

o Five points

Accuracy: 98.61%

Support Vector Machine

Participants: 78

681 A, Rahman et
al., 2018

2.4 GHz Doppler
Radar

» Respiration-based

o Inhale-exhale area ratio

o Minor component

Accuracy: 95%

K-nearest neighbor

Participants: 6

105 M. M. Islam
et al., 2019

2.4 GHz Doppler
Radar

» Respiration-based

o FFT-based feature

Accuracy: 100%

Support Vector Machine

Participants: 10

Only sedentary breathing

[l 3. M. M. Islam
et al., 2020

2.4 GHz Doppler
Radar

» Respiration-based

o Exhale Area: Air flow

o Breathing depth

Accuracy: 98.8% (normal)

Accuracy: 92% (combined)

Support vector machine
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Reference Year

of Publication Frequency)

Hardware (RF

Identification Features

Outcome

Mixture of sedentary and after

short exertion breathing

Participants: 10

221 5. M. M. Islam

etal., 2020

2.4 GHz and 24-
GHz Doppler
Radar

Respiration-based OSA

patient

o Peak power spectral

density

o Linear envelop error

o Inspiratory duration

Accuracy: 93%

OSA patient recognition

Support Vector Machine

Participants: 6

(23] D. Rissacher

2.4 GHz Doppler

Heart-based dynamics

o Cardiac motion

Accuracy: 82%

K-nearest neighbor

et al., 2015 Radar

o Wavelet based time and o

Participants: 20
frequency feature
. Accuracy: 94.6%

Heart based dynamic y ’
(41 K. Shi et al., 24 GHz Doppler _ Support Vector Machine
2018 Radar o Heartbeat signal

complexity

Participants: 4

(73] T. Okano et
al., 2017

24 GHz Doppler
Radar

Heart based dynamics

o Power spectral density

Accuracy: 92.8%

Autoregressive analysis

Participants: 11

(78] p, cao et al.,
2020

24 GHz Doppler
Radar

Heart based dynamics

Accuracy: 98.5%

Convolutional Neural Network
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Reference Year Hardware (RF

of Publication Frequency) Identification Features Outcome
» Short-time Fourier  Participants: 10
Transform
e Mixture of normal and
o Heartbeat abnormal breathing
o Energy
o Bandwidth
e Accuracy: 93%
o Channel state Information
(7 3. Zhang et WiFi router & » K-nearest neighbor
al., 2016 Laptop o Gait Pattern es
» Participants: 16
.research
al human
L o Accuracy: 95% l: .
2] « Respiration-based y- 9970 iity, linear
. Morphological pattern . 2.4 GHz
(781 3. Liu et al., WiFi router & e « Deep learning \ _
2020 Laptop n coaxial
o Fuzzy Wavelet based
Y  Participants: 20 MATLAB
; features

were investigated, such as power spectral density, linear envelop error, and packing density, which convey the
breathing energy and air flow profile related phenomena. The research concentrated on using the Levenberg—
Marquadrt back propagation algorithm to perform classification (52] Figure 4 illustrates the experimental setup and
reported results for training and applying a neural network classifier to recognition of the Doppler radar
physiological measurements 52 The overall classification accuracy was above 90%, which clearly illustrates that
the proposed technique can be effective for this application. However, this work was limited to identifying only three

participants. Another issue is that the experiment was entirely focused on measuring a single subject at a time.
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Figure 3. Radar-measured respiratory features from 30 second epochs. Pioneering efforts at recognizing subject
identity from radar measured respiratory signals (a) involved extraction of three different features: breathing rate
(b), linear envelop error (c), and packing density (d). Linear envelop error shows the peak distribution differences

and packing density illustrates the differences in air flow profile with the inhale and exhale area episodes. Taken
from 2],
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TABLEII
TESTING RESULTS CONFUSION MATRIX
Person] Person2 Person3 Success
Person 1 T 0 0 100 %
Person 2 0 13 4 76.4%
Person 3 0 0 17 100%

(b)

Figure 4. Human identification experiment using a radar system. The test set-up is shown, (a), along with the

neural network recognition results, (b). From 52,

Subsequent research by the same group reported on continuous authentication based on dynamic segmentation
where they used inhale and exhale area ratios of the captured respiratory pattern as unique features for six
different participants 81, Dynamic segmentation evaluates the displacement and identifying points in the range of
30-70% of both exhale and inhale episodes, which defines four boundary points of a trapezium 83, The ratio of
these two areas provides a useful feature which indicates how quickly the next cycle of inhalation begins 58],
Figure 5 illustrates the inhale/exhale area ratio features for two different subjects, which differ significantly. Based
on extracted unique features, a K-nearest algorithm was integrated to identify each person, which showed a
classification accuracy of almost 90% [l |n order to increase the accuracy of the proposed method, minor
component analysis was performed on subject data sets which showed overlapping inhale/exhale area ratios. For
minor-component analysis, a linear demodulation technique was employed 88, The variation in minor component
shows the radar cross section and high frequency component of respiration and heart signal modulation. Higuchi
fractal dimension analysis was performed on minor components of the radar captured signals to identify

overlapped inhale/exhale area ratios of subjects, which increased the classification accuracy to 95% (8l The
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proposed method clearly shows efficacy. However, the number of subjects of tested was small and further

investigation is required to establish larger data set functionality.
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Figure 5. Respiratory pattern classifiers used for subject recognition. Dynamically segmented inhale/exhale area
ratios of two subjects significantly differs, (a), as do signal patterns relating to the dynamics of breathing near the

points where the inhale and exhale transition occurs, (b). From [68],

Another limitation of this approach is the reliance on two different parameters (inhale/exhale area ratio and minor
component analysis). Further investigations also demonstrated that, as inhale/exhale ratio become more similar,
false classification may occur /9. To increase performance further, an FFT based feature extraction approach was
applied with an integrated support-vector machines (SVM) classifier using a radial basis function 9. The
performance of the proposed system increased as the FFT based feature extraction approach contains all
breathing dynamics related features (breathing rate, breathing depth, inhale rate, exhale rate and airflow profile).
Figure 6 illustrates the FFT based feature extraction approach used for six different participants. As the data set
and number of participants was small, continued experimentation remains needed to verify the efficacy of the FFT-
based feature extraction approach. For further investigation, the feasibility of the FFT-based approach for
extracting identifying features from radar respiratory traces for sedentary subjects was tested, along with
measurements of the subjects just after performing physiological activities (walking upstairs) 2. It was found that
subject recognition still worked but was not as effective after performing short exertions as it was for sedentary
subjects 1. Experimental results demonstrated that, after short exertion, the dynamically segmented exhale area
and breathing depth increased by more than 1.4 times for all participants, which made evident the uniqueness of
the residual heart volume after expiration for recognizing each subject, even after short exertions 2. They also
integrated a machine learning classifier SVM, with a radial basis function kernel which resulted in an accuracy of
98.55% for subjects in a sedentary condition and almost 92% for a combined mixture of conditions (sedentary and
after short exertions) 2. Furthermore, they also investigated identity authentication of patients with obstructive
sleep apnea (OSA) symptoms based on extracting respiratory features (peak power spectral density, packing

density, and linear envelop error) for radar captured paradoxical breathing patterns, in a small-scale clinical sleep
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study integrating three different machine learning classifiers (SVM, k-nearest neighbor (KNN), and random forest).
Their proposed OSA-based authentication method was tested and validated for five OSA patients with 93.75%
accuracy, using a KNN classifier which outperformed other classifiers /2. This study was limited to only six supine

subjects in the controlled environment of a sleep center.
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Figure 6. FFT/SVM based subject recognition study. A 2.4-GHz radar system (a) was used to measure subjects in
seated position (b) and FFT-based extracted features up to 10 Hz were used to identify six different participants
(c). From X9,

2.2. Radar-Based Identity Authentication through Heart-Based Features

One of the first attempts at recognizing people from their heart-based features (cardiac cycle) from Doppler radar
was reported on by a research group at Clarkson University 23], They used a 2.4-GHz heterodyne radar system
from which cardiac data was extracted, and an ensemble average was computed using ECG as time reference [Z3],
A continuous wavelet transform was integrated to provide time-frequency analysis of the average radar-measured
cardiac cycle and a k-nearest neighbor algorithm was used to recognize people with an accuracy of 82%. This was
the first reported attempt for applying cardiac-based features using a cardiac-radar system as biometric
identification tool 2], The low classification accuracy occurred as there was overlap in the ensemble average of the
cardiac cycle; therefore, further investigation and experimentation is required to demonstrate efficacy for more

reliable recognition of subjects from radar captured signals.

A study conducted by a research group at the University of Buffalo 8 proposed a continuous identity
authentication system named “Cardiac Scan”. This system used a 2.4-GHz Doppler radar transceiver with two

antennas (one for transmit and another for receive functions) each having a beam width of 45°.

The radar power consumption was 650 mW with a 5V-volt source and 130 mA of current B8, The customized
Doppler radar was placed in front of the subject at 1 meter 28, Figure 7 shows the experimental set up of the
proposed cardiac scan system, from which five different points were extracted from the radar captured respiration

patterns which were hypothesized to fully represent cardiac motion. Based on the hypothesis the experiment
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illustrated that these heart-based geometry measures differ from person to person due to difference in size,
position and anatomy of the heart, chest configuration, and various other factors 8. From their experimental
results, it was also clear that no two subjects had the same heart, tissue, and blood circulation system, as there
were significant differences in their cardiac cycle points measured in the radar data set 8. Figure 8 illustrates the
cardiac motion marker for one segment captured from the radar respiration measurement. In this work, the user’s
cardiac-motion related features were stored in the system. A SVM with a radial basis function (RBF) kernel
classifier was employed to uniquely identify different participants. A study of a 78 subject data set was reported,
and the proposed system achieved an accuracy of 98.61% and a 4.42% equal error rate 28, One of the limitations
of the above proposed technique is that the complete study was performed with healthy sedentary persons and
only for single-subject measurements. If subjects have cardiovascular diseases, unique identification may be
problematic as the cardiac cycle would be affected. Further study is also required to verify that the proposed heart-

based cardiac cycle points remain consistent after subjects perform varying degrees of physiological activity.

i U ey
| Acquisition :\‘ ,  |Front Radar|
| S _De_rEe_ —-I -__J h"‘“

Figure 7. Experimental setup for cardiac scan continuous authentication system using microwave Doppler radar. A
data acquisition device and LABVIEW interfaces were used to capture signals. A pulse sensor and chest belt were

used for reference measurements. From [28],
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Figure 8. Cardiac motion marker. The cardiac motion cycle defined by five different points (red dots) within five

different points of displacement and timing was calculated as a unique feature for recognizing people. From 58,

In another reported study, cardiac measurement of different persons was used to uniquely identify each using a 24-
GHz continuous wave radar system employing six-port measurement technology 2. Figure 9 represents the
hardware setup used for this experiment. A six-port measurement system consists of two input ports and four
output ports. The two input signals are superimposed to extract phase shift information due to chest displacement.
This particular work focused on extracting heartbeat signal information for each participant, as the exact position
and angle of the heart in the thorax, as well as the anatomy of the thorax itself, is a little different for every person
due to varying tissue and muscle/fat components /4, Due to these differences, the radar-captured heartbeat signal
involved different propagation and attenuation characteristics. As each person has a different heart position and
dimensions, dominant features exist in the heartbeat signal which form a complex and unique pattern. Figure 10
illustrates the heartbeat signal variation for each participant. Initially a 5-second heartbeat signal was used for
identifying unique features for each participant. Integrated machine learning classifiers were also used to recognize
people. A quadratic SVM outperformed other classifiers, with an accuracy of 74.2%. To increase the accuracy, a 7-
second heartbeat segment was used, which increased the classification accuracy to 94.6%. The study provides a
clear indication that heart-based geometry can be used as a unique feature to identify people. However, validation
for this study only included four different participants. Thus, further investigation is required for larger data sets

having varying conditions, especially those involving measurements made after physical activities.
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Figure 9. Experimental setup for unique identification of a human from radar captured respiration pattern which

includes six-port technology. From [Z4],
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Figure 10. Heartbeat curves recorded by a 24-GHz radar for four subjects. Each signal is periodic but for each

subject the pattern is a bit different which serves as a unique feature for recognition of identity. From [Z4],

Another study used a 24-GHz radar system to extract heartbeat related unique features to recognize eleven
different participants 2. An autoregressive (AR) model-based frequency analysis was introduced, which is
superior to FFT, having a window length of 100 milliseconds, from which power spectral density could be calculated
73l Each peak in this analysis represents the contraction and extraction of the heart. The first peak was used as a
reference and then a period of 0.2 s before and after, 0.4 s, was used as a template. Template matching was used
to detect all heartbeats. The average of the power spectral density was used as a unique identification number for
each participant. Figure 11 illustrates the power spectral density features extracted from the radar respiration signal
and PSD profile for eleven different participants. The success rate was 92.8%. The proposed method clearly
demonstrates heart-based PSD feature extraction efficacy for recognizing people. However, if the position between
the radar and human subject changes or the heart rate fluctuates greatly then the proposed method produces false
classification. Motion artifacts and multi-subject scenarios were not considered and remain a significant challenge

for this approach.
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Figure 11. Measured 24-GHz heartbeat patterns for autoregressive PSD analysis based subject recognition.
Measurement of heartbeats are shown for electrocardiogram (reference) (a), Doppler radar (b), PSD of Doppler

sensor output (c), and (d) PSD for 15-s Doppler radar for eleven participants 2!,

Recently, another study demonstrated the efficacy of radar-based identity authentication using a short-time Fourier
Transform (STFT) 8, Each person sat a 1.5 m distance and physiological signatures were recorded for about 6
seconds of the breathing pattern, using a 24-GHz continuous wave radar. An STFT was used to characterize the
micro-Doppler signature of ten different participants, followed by basic image transformation methods like
translation, rotation, zoom, mirror, and cropping. The STFT image was used to represent heart-based features for
each different subject. A deep convolutional neural network (DCNN) was used to classify subjects based on their
radar captured micro-Doppler signatures. Figure 12 illustrates the STFT images for four participants which are
significantly different for each subject and include unique features for identification. From the spectrogram, three
different heart-based features were extracted, such as the period of the heartbeat, the energy of the heartbeat, and
the bandwidth of the signal. A deep convolutional neural network was then trained, and the resulting classification

accuracy was almost 98.5%.
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Figure 12. (a—d) Short time Fourier transform (STFT) of four different participants for extracting micro-Doppler

signatures. The images for four different participants clearly have significantly different spectral content. From 8,

To extract heart-based or respiratory information, data segmentation generally plays an important role. Segments
correspond to the FFT window size and should contain at least one full respiration cycle and multiple cardiac
cycles B8I79 The number of segments used for a data set also plays an important role for authentication time and
accuracy 28, Increasing the FFT window size will bring a benefit in resolution as a higher number of samples are

included in the operation, but this will also increase the time delay and complexity of authentication and is not
generally justified for real-time operation.
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