
Flocculation Harvesting Techniques for Microalgae | Encyclopedia.pub

https://encyclopedia.pub/entry/2007 1/14

Flocculation Harvesting Techniques for
Microalgae
Subjects: Energy & Fuels

Contributor: Ibrahim A. Matter , Vu Khac Hoang Bui , Mikyoung Jung , Jung Yoon Seo , Young-Eun Kim , Young-

Chul Lee , You-Kwan Oh

Microalgae have been considered as one of the most promising biomass feedstocks for various industrial

applications such as biofuels, animal/aquaculture feeds, food supplements, nutraceuticals, and pharmaceuticals.

Several biotechnological challenges associated with algae cultivation, including the small size and negative surface

charge of algal cells as well as the dilution of its cultures, need to be circumvented, which increases the cost and

labor. Therefore, efficient biomass recovery or harvesting of diverse algal species represents a critical bottleneck

for large-scale algal biorefinery process. Among different algae harvesting techniques (e.g., centrifugation, gravity

sedimentation, screening, filtration, and air flotation), the flocculation-based processes have acquired much

attention due to their promising efficiency and scalability. 
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1. Introduction

Microalgal biomass has attracted much attention in the academic and industrial fields due to its various industrial

applications such as animal/aquaculture feeds, food supplements, nutraceuticals, and pharmaceuticals .

Recently, petroleum-fuel scarcity as well as global warming associated with greenhouse gas emissions (e.g., CO )

are obliging scientists and engineers to actively look for new and renewable sources of transportation fuels .

Various liquid and gaseous biofuels, such as diesel, aviation fuel, ethanol, butanol, hydrogen, and methane, can be

produced from algal biomass through biological and thermochemical transformation technologies .

Microalgae can utilize CO  as an inorganic carbon substrate using light energy and can be grown using diverse

water resources, including freshwater, seawater, and even industrial/domestic wastewater. They can be also

cultivated at a large-scale using different bioreactor systems such as open ponds and photobioreactors .

However, due to the low concentration (~5 g/L) in culture, small size (~5 μm) and negative surface charge (~−20

mV) of algal cells, external energy and/or chemicals are generally required to accelerate their recovery from base

water . Furthermore, other morphological and physiological characteristics of algal cells such as shape, cell

wall structure, and extracellular organic matter (EOM) change significantly depending on the nutritional and

environmental conditions including medium composition, light, temperature, pH, culture duration, and bioreactor

type . The algae harvesting costs are generally estimated at 20–30%, with the occasional rise to 60%, of the
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total biomass production cost, depending on the algal species and culture process used . Therefore, the

development of a high-efficiency and cost-effective harvesting process is key to achieving commercial scale algae-

based process.

Algal biomass harvesting has been extensively studied with particular focus on centrifugation, gravity

sedimentation, screening, filtration, air flotation, and flocculation techniques. However, there is no single universal

harvesting method for all algal species and/or applications, which is both technically and economically viable .

For instance, centrifugation is based on a mechanical gravitational force that allows for efficient harvesting of

suspended cells in a short time. However, due to the intensive energy requirement, it is recommended only for

high-value algal products such as in foods and pharmaceuticals . In the filtration process, micro-sized algal

cells can be passed through a suitable membrane under high pressure to obtain a thick paste of algal biomass .

This size-exclusion method may be useful and scalable for algae harvesting only if problems in membrane blocking

can be minimized or prevented . The air flotation (or inverted sedimentation) harvesting process is based on

the generation of up-rising gas bubbles that bind to algal cells and induce their flotation to the liquid surface .

However, due to differences in the surface hydrophobicity of algal cells, harvesting efficiency varies greatly

depending on the species of algae . It should also be noted that the high operation cost for producing small air

bubbles can limit large-scale commercialization.

Flocculation refers to the aggregation of unstable and small particles through surface charge neutralization,

electrostatic patching and/or bridging after addition of flocculants. Flocs formation allows for separation (or

recovery) by simple gravity-induced settling or any other conventional separation method . The flocculation

process is simple and efficient, and has been extensively investigated as a promising strategy for harvesting

various algal species . Figure 1 shows the flocculation harvesting process of algal cells for algal biorefinery.

Figure 1. Schematic diagram of the flocculation harvesting process of algal cells with a recyclable flocculant.

As the flocculant plays a major role in the flocculation harvesting process, the discovery of a highly efficient and

cost-effective flocculant has forever remained a challenge in most studies. Nowadays, the use of conventional

inorganic metal salts such as aluminum sulfate and ferric sulfate has been reduced due to high dosage and

biomass contamination . Various natural and synthetic organic flocculants have been designed and developed to
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improve flocculation efficiency. However, the former have high production cost and a short shelf-life while the latter

have adverse effects on harvested biomass and non-biodegradability, due to their petroleum origins . Metal

cations released from the electrode under direct electric current condition are able to electrostatically attract almost

all types of algal cells, resulting in efficient flocculation. Significant efforts are being directed to prevent

electrode/biomass fouling and to reduce systemic/electric cost for large-scale algae harvesting. Nanoparticles in

either single or hybrid forms decorated with various cationic chemicals have been employed for rapid algae

separation and/or multi-functionalities such as cell disruption and lipid extraction . This approach although highly

efficient, is expensive and is mostly limited to laboratory-scale studies. Spontaneous aggregation of algal cells

under specific conditions and the use of a self-flocculating microorganism can be considered as sustainable and

environment-friendly . However, species-specific reactivity, availability of low-cost bio-flocculant-

microorganisms, and process scale-up should be properly considered for practical applications. Ideally, in addition

to excellent harvesting efficiency and promising scalability, the industrial flocculant should satisfy the demands for

recyclability, low toxicity, low-cost material, and massive production process.

2.  Auto-Flocculation

In auto-flocculation, suspended algal cells spontaneously aggregate, forming large flocs, which induce their simple

gravitational sedimentation (Figure 2). This phenomenon has been observed in various algal species particularly

under non-ideal culture conditions such as change in pH and cultural aging, as summarized in Table 1. Both

alkaline and acidic conditions have been reported to reduce the intensities of the negative surface charge of algal

cells, thereby promoting their self-aggregation . Under alkaline conditions above pH 9, the changes in the

surface charge of algal cells are mainly attributable to significant secretion of protective extracellular polymers .

Under acidic conditions, fluctuating dissociations of carboxyl and amine groups in the algal cell wall can cause

changes in surface charge.

Figure 2. Auto-flocculation harvesting of algal biomass. Three vials contain algal samples cultured in different

nitrate concentrations: (left) 0.5×; (middle) 1× (original); and (right) 2×. Reprinted from Reference , distributed

under the terms of the Creative Commons Attribution License.

Table 1. Comparison of auto-flocculation techniques for algae harvesting.
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3. Bio-Flocculation

Bio-flocculation is performed by adding a self-flocculating microorganism (or its extracellular biopolymer) to the

culture broth to harvest non-flocculating, target algae (Figure 3). Bio-flocculants include bacteria, fungi, yeasts, or

self-flocculating algae as well as their exudate-rich culture supernatants, as shown in Table 2. Since no chemical is

required in this process similar to the case of auto-flocculation, the bio-flocculation method can also be considered

as a sustainable and environmentally friendly technique for algal biomass harvesting . A bio-flocculant-

microorganism can be prepared by co-culturing with target algae or culturing separately in a different bioreactor,

before performing the intended use . Although the mechanism of bio-flocculation has not been clearly

elucidated, it is believed that it is mainly a function of the reactivity of the extracellular biopolymer and/or the direct

adsorption of the self-flocculating microorganisms on the target algae .

Acidic pH

pH 4.0 C. ellipsoideum (4.38 g/L) 95% @ 15 min

pH 4.0 C. nivale (4.17 g/L) 94% @ 15 min

pH 4.0 Scenedesmus sp. (6.94 g/L) 98% @ 15 min

Alkaline pH

pH 11.5 C. muelleri #862 (0.42 g/L) 100% @ 30 min

pH 11.0 C. vulgaris (0.5 g/L) 95% @ 60 min

pH 12.0 Chlorococcum sp. R-AP13 94% @ 10 min

pH 12.5 Ettlia sp. YC001 (1.2 g/L) 94% @ 30 min

pH 10.4 N. oculate (2.27 × 10  cells/mL) 90% @ 10 min

pH 11.6 S. quadricauda #507 (0.54 g/L) 95% @ 30 min

Culture aging 16 days S. obliquus AS-6-1 (2.25 g/L) 80% @ 30 min
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Figure 3. A schematic diagram of bio-flocculation harvesting of algal biomass using bacteria. EPS, extracellular

polymeric substances. Reprinted from Reference  with permission from Springer Nature.

Table 2. Comparison of bio-flocculation techniques for algae harvesting.

[39]

Flocculant (Dosage)
Alga (Cell Density, Volume

or Amount)

Optimal

Harvesting
Ref.

Fungus A. fumigatus C. protothecoides ~90% @ 24 h

A. fumigatus (1.5–2.0 × 10

spores/L)

S. quadricauda (5–8 × 10

cell/mL)
~97% @ 48 h

A. fumigatus T. suecica ~90% @ 24 h
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References

A. lentulus (1.0 × 10  spores/mL) Chroococcus sp. (1.58 g/L) ~100% @ 24 h

Penicillium cells (1.92 g) Chlorella sp. (3.84 g) ~98% @ 2.5 h

Penicillium spores (1.1 × 10

cells/mL)
Chlorella sp. (3.84 g) ~99% @ 28 h

Yeast

Extracellular protein of S. bayanus

(0.1 g/L)
C. reinhardtii (10 mL) 95% @ 3 h

Extracellular protein of S. bayanus

(0.1 g/L)
Picochlorum sp. (10 mL) 75% @ 3 h

S. bayanus (1:1, v/v) C. reinhardtii (10 mL) 80% @ 6 h

S. bayanus (1:1, v/v) Picochlorum sp. (10 mL) 60% @ 6 h

S. pastorianus (0.4 mg/g cell) C. vulgaris (5 g/L) 90% @ 70 min

Bacterium

Flavobacterium, Terrimonas, and

Sphingobacterium

C. vulgaris (6 × 10

cells/mL)
94% @ 24 h

Bio-flocculant secreted from S.

silvestris W01 (3:1, w/w)
N. oceanica DUT01 90% @ 10 min

Alga

S. obliquus AS-6–1 (1%, v/v) S. obliquus FSP-3 (10 mL) 83% @ 30 min

Exudates-rich spent media of C.

cf. pseudomicroporum (1:1, v/v)
S. ellipsoideus (15 mL) 97% @ 4 h

Phormidium sp. Chlorella sp. 100% @ 5 min
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4. Chemical Flocculation

Chemical flocculation of algae occurs due to charge neutralization and electrostatic bridging between the

suspended algal cells and the applied flocculant(s), resulting in floc formation and subsequent sedimentation

(Figure 4). Multivalent inorganic chemicals, biopolymers, or inorganic–organic hybrid polymers have been

extensively used as algae-harvesting flocculants. Aluminum sulfate and ferric chloride are of the most popular

inorganic flocculants for wastewater clarification and algal biomass recovery . Chitosan, cationic starches,

modified tannins, and polyacrylamides are examples of organic polymers that are widely used . The

harvesting efficiency of both organic and inorganic flocculants depends largely on their physicochemical properties

such as solubility and electronegativity, as well as the operating conditions, such as dosage and algal solution

characteristics (e.g., cell density, pH, and ionic strength) . It should be noted that the sizes of the flocs formed

through charge neutralization with conventional inorganic chemicals are generally small, requiring high dosage for

algae flocculation. On the other hand, the bridging and sweeping reactions between polymeric flocculants and algal

cells can lead to the formation of larger sized flocs, thereby promoting efficient biomass recovery at a relatively low

dosage . Table 3 briefly compares the different inorganic and organic chemical flocculants for algae harvesting.
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Figure 4. A schematic diagram of chemical flocculation harvesting of microalgae using a cationic polyelectrolyte.

Reprinted from Reference , distributed under the terms of the Creative Commons Attribution License.

Table 3. Comparison of inorganic and organic chemical flocculants for algae harvesting.
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Fe (SO )  (0.6 g/L) N. oculata (50 mL) 87% @ 180 min

Fe (SO )  (1.0 g/L) Chlorella sp. KR-1 (1.52 g/L) 98% @ 30 min

 Mg(OH)  (1 mM) Chlorella sp. (0.1 g/L) 90% @ 30 min

Organic

flocculant

Cationic inulin (60 mg/L) Botryococcus sp. 89% @ 15 min

Cationic starches (0.01 g/L) S. dimorphus (0.12 g/L) 95% @ 90 min

Cationic starches (1.4:1,

w/w)
S. obliquus 90% @ 60 min

Cationic starches (119 mg/g

cell)
B. braunii (0.62 g/L) 94% @ 20 min

Cationic starches (50 mg/L) S. limacinum (0.93 g/L) 90% @ 20 min

Cationic starches (7.1 mg/L) C. vulgaris (0.75 g/L) 90% @ 120 min

Cationic starches (89 mg/g

cell)
C. pyrenoidosa (1.02 g/L) 96% @ 20 min

Chitosan (10 mg/g cell) C. sorokiniana 99% @ 45 min

Chitosan (120 mg/L)) C. vulgaris (1 g/L) 99% @ 3 min
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Chitosan (30 mg/L) Chlorella sp. (3 × 10  cells/mL) 97% @ 60 min
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5. Particle-Based Flocculation

Particle-based flocculation can potentially circumvent some drawbacks of conventional chemical flocculation such

as bio-toxicity and difficulties related to chemical recovery. For these purposes, particle-based flocculants should

be designed to be more efficient, recoverable, and/or have multi-functionalities other than algae recovery, such as

cell disruption and lipid extraction . Therefore, numerous research efforts have devoted effort towards the

development of new and optimal nano/micro-particle-based flocculants. This section summarizes the recent

progress in algae harvesting using the nano/micro-particle-based flocculants, namely aminoclay (AC)-based
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6. Electrochemical Flocculation

Electrochemical algae harvesting is generally carried out by passing a direct electrical current through electrodes

into a culture broth wherein algal cells act as negatively charged colloids (Figure 5). There are two types of

electrodes, “sacrificial electrodes”, whose metal ions are released into the aquatic environment, and “non-sacrificial

electrodes” with non-reactive anodes and cathodes (Table 5). The electrical current in aqueous solution can cause

a water-electrolysis reaction through either the sacrificial or non-sacrificial electrodes, which would release

hydrogen and oxygen gases from the cathode and anode electrodes, respectively . In this review, the
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electrochemical flocculation (ECF) process is discussed for the following three aspects: the sacrificial electrode, the

non-sacrificial electrode, and electro-flotation.

Figure 5. Electrochemical flocculation harvesting of microalgae using aluminum electrodes (Al), graphite electrodes

(C), aluminum sulfate (Al (SO ) ), and graphite electrodes with aluminum sulfate (Al (SO4)  + C): (a) microalgae

removal efficiency; and (b) photographs of the harvesting processes. Reprinted from Reference , distributed

under the terms of the Creative Commons Attribution License.
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7. Conclusion

The importance of microalgae research is increasing in parallel with increasing demands for food, animal feeds,

pharmaceuticals, and biofuels. However, moving from lab-scale to commercial-scale applications still requires

extensive developments for reliable, cheap, and eco-friendly algae cultivation and harvesting processes. The

specific flocculation process should be carefully selected and optimized comprehensively in consideration of

various key factors such as efficiency, environmental impact, operating cost, value-added utilization of whole

biomass, characteristics of algal species, and culture conditions.
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