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KLF11 (Krüppel-like factor 11) belongs to the family of Sp1/Krüppel-like zinc finger transcription factors that play important

roles in a variety of cell types and tissues. In carcinogenesis, KLF11 can show diverse effects. Its function as a tumor

suppressor gene can be suppressed by phosphorylation of its binding domains via oncogenic pathways. However, KLF 11

itself can also show tumor-promoting effects and seems to have a crucial role in the epithelial-mesenchymal transition

(EMT) process. 
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Given the described role of KLF11 in growth regulation, it is not surprising that KLF11 has also been implicated in the

development of tumors. In carcinogenesis, the TGF-β signaling pathway plays a dual role characterized by tumor

suppression at early tumor stages and enhanced tumor progression at the late stages of the disease [ ]. TGF-β

mediates tumor suppression via Smad-dependent signaling, which then regulates the transcription of cell-cycle-

associated genes like p15 and p21 [ ]. But Smad7 also exerts a negative feedback loop by binding to the activated

TβR-I, blocking it and preventing phosphorylation [ ]. Disturbances in the Smad-dependent signaling have recently

been shown in human cancers (including pancreatic cancer), and are associated with the ability of tumor cells to escape

from the TGF-β–induced growth inhibition [ ]. TGF-β may also signal through Smad-independent signaling cascades

(e.g., Rho-like guanosine triphosphatases, p38, mitogen-activated protein kinase [MAPK], phosphatidylinositol-3-kinase or

c-Jun-N-terminal kinase) and induce an epithelial-to-mesenchymal transition (EMT)—which is a key process in the

formation of cancer metastasis—of tumor cells, leading to enhanced tumor cell migration and invasion [ ].

KLF11, as discussed above, is an early response transcription factor that potentiates the TGF-β induced growth inhibition

in normal epithelial cells by terminating the inhibitory Smad7 loop. In pancreatic cancer cells with oncogenic Ras

mutations, this function of KLF11 is inhibited by the oncogenic Erk/MAPK: Erk/MAPK phosphorylates KLF11, which leads

to the disruption of the KLF11–mSin3a interaction [ ]. This inhibits the binding of the KLF11–Smads complex to the TIE

element and leads to a reduced TGF-β-induced c-myc repression and to a reduction of the anti-proliferative effects of

TGF-β [ ]. Another study showsd that KLF11 is inhibited in CHO cells by the epidermal growth factor (EGF)–Ras–

MEK1–ERK2 signaling pathway. Like in the Erk/MAPK pathway, phosphorylation of four serine/threonine sites adjacent to

the SID leads to the disruption of the SID–mSin3A interaction [ ]. In KRAS oncogenic mutant cancer cells, KLF11

inhibits BrdU incorporation, increases apoptosis, and inhibits the KRAS-mediated foci and agar colony formation. In vivo,

KLF11 partly inhibits the growth of pancreatic tumor cells of KRAS mutant xenografts, by inducing cell cycle arrest at the

S phase via downregulation of cyclin A2 [ ]. Therefore, KLF11 might participate in the functional switch of TGF-β from a

tumor suppressor to a tumor promoter. Figure 1 gives an overview of the different roles of the KLF11-mediated TGF-β–

TGF-receptor–Smad signaling pathway in normal cells and tumors.

In addition to the inhibition of KLF11 by SID phosphorylation via Erk/MAPK, Buttar et al. [ ] suggested an additional

model of KLF11-mediated tumor suppression and its antagonism by an oncogenic pathway. KLF11 binds to the GC-rich

consensus sequences in the promoter region of cPLA2α, the key rate-limiting enzyme of the oncogenic PGE2 cascade.

Following binding, KLF11 represses the cPLA2α promoter by recruiting the chromatin-remodeling complex Sin3a-HDAC

to the promotor. In this way, KLF11 behaves as a tumor suppressor gene by repression of the cPLA2α–PGE2 pathway.

This mechanism was shown in Barrett’s epithelial cells. EGFR-AKT signaling, which is upregulated in a subset of patients

during carcinogenesis in Barrett’s esophagus cancer, leads to the phosphorylation of threonine at position 56 in the R1

domain (SID) of KLF11. This phosphorylation inhibits the KLF11 binding, and the repression of the cPLA2α promoter and

the tumor-suppressing effects of KLF11 are inhibited. Probably EGFR can use two different intracellular pathways (ERK2

versus AKT) to inactivate KLF11 via phosphorylation. These phosphorylation events expand our biochemical knowledge

about KLF11 to the post-translational effects.

On the contrary, direct tumor-promoting effects of KLF11 have also been described. In hepatocellular carcinoma, KLF11

had a significant influence on proliferation and apoptosis. It also promoted local invasion and distant migration by

suppressing the Smad7 transcription via binding to the Smad7 promoter or by directly upregulating the Smad2/3
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expression [ ]. Ji Q et al. demonstrated that the relative Twist1 promoter region activity increased gradually with

increasing KLF11 levels in the plasma [ ]. Therefore, they speculated that KLF11 might regulate gastric cancer

migration and invasion by increasing the Twist1 expression, which is essential for EMT [ ].

Figure 1. KLF11-mediated modulation of the TGF-β signaling pathway in normal cells and tumors. An activated TGF-β

ligand binds to the type 2 domain of the TGF-β receptor, which then recruits and phosphorylates a type 1 receptor. The

type 1 receptor then recruits and phosphorylates a receptor-regulated Smad (R-smad). The R-smad then binds to the

common smad, Smad 4, and forms a heterodimeric complex. The Smad complex translocates to the nucleus to induce

the expression of KLF11. In normal cells, the KLF11-Sin3A-HDAC complex binds to the promoters of Smad7 and

represses its expression, which acts as a negative feedback loop of the TGF-β–Smads signaling pathway. However, in

some tumors, RAS was activated by tumor-promoting substances/growth factors. Ras phosphates KLF11 by the RAS–

MEK–ERK pathway, which leads to the disruption of the KLF11–mSin3a interaction, resulting in the termination of the

inhibitory KLF11-mediated Smad7 loop.

KLF11-methylation-dependent inactivation and downregulation occurs in several malignancies, including leukemia,

myeloproliferative disorders, esophageal adenocarcinoma, pancreatic cancer, germ cell tumors, ovarian cancer, and head

and neck cancer, supporting its candidacy as an actual tumor suppressor gene in humans [ ]. KLF11 is

involved in the progression of a wide variety of cancers, such as ovarian cancer and pancreatic cancer [ ]. In breast

cancer, the KLF11 promotor is also hypermethylated, and the hypermethylation is associated with low expression of

KLF11. KLF11 hypermethylation might be associated with higher rates of metastases [ ]. Similar results were found in

uterine fibroids and in myelodysplastic syndrome [ ], suggesting that DNA methylation to regulate KLF11 expression

might be a key event that directly contributes to tumorigenesis.

It was recently reported that the microRNA miR-30d increased the survival of BT474 and MDA-MB-231 breast cancer

cells. It was shown that it inhibited apoptosis and increased Bcl-2 expression, while it reduced the Bax protein levels. This

influence of miR-30d on breast cancer cell growth, metastasis, and EMT is dependent on a low level of KLF11 and on a

high level of pSTAT3. KLF11 is a direct target of miR-30d, and KLF11 and pSTAT3 expression are regulated by miR-30d

[ ].

MiR-30 also reduced the profibrogenic TGF-β signaling in hepatic stellate cells by suppressing the KLF11 expression and

thus enhancing the negative feedback loop of TGF-β signaling imposed by Smad7 [ ]. LincRNA-p21 reduced the

availability of miR-30 [ ]. Besides miR-30d, overexpression of miR-10b in hepatocellular carcinoma (HCC) promoted

HCC cell migration and invasion. MiR-10b downregulated KLF4, which is the inhibitory transcriptional factor of KLF11. In

this way, KLF11 was upregulated, which promoted HCC EMT [ ].

All these results suggest that KLF11 plays a crucial role during tumorigenesis and development. (Table 1.).

Table 1. KLF11 in cancers.
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Role in Cancer
Demonstrated Functional
Effects

Cancers/Cancer Cell Type Date Ref.

KLF11 could be induced in

non-small cell lung cancer by

radiohyperthermia and might

mediate the effects of

radiohyperthermia.

KLF11 induced apoptosis and

inhibited cell proliferation by

elevating intracellular reactive

oxygen species. KLF11

knockdown reduced the

effects of radiohyperthermia.

Human non-small-cell lung

cancer
2019 [ ]

KLF11 mediates the tumor-

promoting effects of miRNA-

30d in breast cancer.

MiRNA-30d increases breast

cancer cell survival, inhibits

apoptosis, promotes migration

and invasion, and mediates

the epithelial–mesenchymal

transition (EMT) phenotype.

MiRNA-30d exerts these

effects by targeting KLF11 and

activating the STAT3 pathway.

Breast cancer 2018 [ ]

KLF11-methylation might be a

biomarker for breast cancer

diagnosis and prognosis.

The median methylation levels

of KLF11 were ≥30% higher

than in normal samples.

KLF11 methylation might also

be associated with a higher

risk of metastasis.

Breast cancer 2012 [ ]

KLF11 expression is reduced

in ovarian cancer.

KLF11 promoter DNA

methylation results in

downregulated KLF11

expression accompanied by

reduced Smad2, Smad3, and

Smad7 expression

Human ovarian cancer 2015 [ ]

KLF11 is upregulated in

gastric cancer an increases

gastric cancer cell migration

and invasion.

KLF11 increases the Twist-1

expression in gastric cancer

cells. The Twist-1 increase is

inhibited when KLF11 is

silenced.

Human gastric cancer 2019 [ ]

KLF11 inhibits prostaglandin

E2 (PGE2) synthesis.

KLF11 represses the promotor

of the PGE2-synthesizing

enzyme cytosolic

phospholipase A2∝ by binding

and by recruiting the Sin3-

histone deacetylase chromatin

remodeling complex to the

promotor.

Esophageal cancer

(Barretts’ esophageal cells)
2010 [ ]
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KLF11 mediates the-

promoting effects of miRNA-

10b on EMT development in

hepatocellular carcinoma.

MiRNA-10b binds to the

3’UTR and downregulates

KLF4, which is an inhibitory

transcriptional factor of KLF11.

Thereby, KLF11 is

upregulated and reduces the

expression ofSmad7. This

upregulates Smad3, which

promotes EMT development.

Human hepatocellular

carcinoma
2018 [ ]

KLF11 increases the

monoamine oxidase (MAO) B

expression.

KLF11 increases MAO B at

the promotor activity, mRNA,

protein, and catalytic activity

levels.

Neuroblastoma and liver

carcinoma cells
2004 [ ]

KLF11 uses the epigenetic

regulator heterochromatin

protein 1 (HP1) to mediate

tumor suppression.

KLF11 recruits HP1 and its

histone methyltransferase to

promotors of cancer genes to

limit the KLF11-mediated gene

activation. The impairment of

this recruitment impairs tumor

suppression.

Pancreatic cancer cells 2012 [ ]

KLF11 mediates growth

inhibition; the mechanism is

disrupted in pancreatic cancer.

In pancreatic cancer cells, the

KLF11–Smad3 complex

formation is disrupted and the

KLF11–Smad3 binding to the

TGF-β-inhibitory element of

the c-myc-promotor is

inhibited. Thereby, the growth

inhibitory effect of c-myc-

silencing is impaired.

Pancreatic cancer cells 2006 [ ]

The KLF11-induced

potentiating of the TGF-β-

signaling by the termination of

the inhibitory Smad7-loop is

inhibited in pancreatic cancer.

In pancreatic cancer cells, an

Erk/mitogen-activated protein

kinase phosphorylates KLF11,

which leads to a disruption of

the KLF11–mSin3a

interaction. The KLF11–

mSin3a repression of the

Smad7 promotor is reduced,

and therefore, Smad7

expression is elevated and

Smad7 exerts its negative

feedback loop.

Pancreatic cancer cells 2004 [ ]

KLF11 is a tumor-suppressor

gene inactivated in

myelodysplastic syndromes

(MDS).

KLF11 is hypermethylated in

15 % of MDS cases, which is

associated with a high

International Prognostic

Scoring System score.

Human myelogenous

leukemia cells
2010 [ ]
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