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The multicomponent alloys with nearly equal concentration of components are known as high entropy alloys (HEAs). The

HEAs quickly became very important in materials science due to their unique properties. Nowadays, the HEAs are

frequently used in energy conversion and storage applications. HEAs can consist of five, six or more components. Plasma

cladding permits coating of the large surfaces of cheap substrates with (often expensive) HEAs and to enlarge, in such a

way, their application area. The large-area coatings deposited by plasma cladding possess multiple advantages such as

low thermal distortion, very high energy density, as well as low dilution of the substrate material. Plasma cladding ensures

good metallurgical bonding between coating and substrate. The costs of operation and equipment are also very attractive.

During plasma cladding, the mixed powders are blown by carrier gas into a plasma torch or are positioned on a substrate. 
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1. Introduction

In recent years, high entropy alloys (HEAs) have become a research hotspot in materials science. Nowadays, HEAs are

frequently used for the energy conversion and storage applications . HEAs are also called multi-principal alloys,

baseless alloys, or alloys without main component. They were first proposed by Brian Cantor and coworkers  and Jien-

Wei Yeh and his team . The first HEAs were alloys with six or more components in equiatomic proportions. It was

unexpected that such alloys may form a uniform disordered solid solution. This is because their unique combination of

atoms with different atomic radii can strongly prevent the nucleation of second phases and their subsequent growth 

. Such alloys can exhibit better properties than traditional alloys. In particular, they possess high hardness 

, good strength at high temperatures , and excellent wear, oxidation, and corrosion resistance . The most

used approaches to manufacturing HEAs are casting or arc melting technologies . In these methods,

the elemental powders are mixed first and then remelted several times in order to ensure the homogeneity of HEAs.

However, the size of HEA parts produced by casting or arc melting is limited. This fact impedes the application of HEAs.

One of the ways to overcome this restriction is to produce the part from other regular or ordinary (possibly even cheaper)

material and to deposit the HEA coating on the surface. Due to this fact, various methods were used to produce the HEA

coatings, such as plasma cladding , plasma spray , thermal spray , laser cladding 

, magnetron sputtering , vacuum arc deposition , electric arc deposition

, and electron beam deposition . All these deposition methods have their advantages and disadvantages. For

example, thermal spraying can take place in low vacuum. On the other hand, the increased oxidation of the components

can proceed. The magnetron sputtering or vacuum arc deposition ensure high density and uniformity of coatings, they

also do not include melting of HEA during manufacturing. However, the maximal thickness does not exceed a few μm. In

the case of plasma cladding, the coatings can be a hundred times thicker. Also, the small droplets of a melt can form

during the vacuum arc deposition; in most cases, they need to be filtered with magnetic loops, decreasing the deposition

rate. The magnetron sputter-deposited films have columnar grain structure, and the coatings after vacuum arc deposition

have uniform equiaxed grains. Researchers listed here only several differences of HEA synthesis methods. Each of them

has, therefore, its own niche (which frequently partly overlaps with those of other synthesis methods). This entry

discusses the plasma cladding, which started to be developed quite recently, just few years ago, and, nevertheless, has

already taken its own place among other technologies.

Plasma cladding is an effective way to manufacture the coatings with large area, with advantages such as low thermal

distortion, very high energy density, as well as small dilution of the substrate material . Plasma cladding assures

good metallurgical bonding between coating and substrate, it also has a low cost in equipment and operation . The

powder of a material to be clad melts rapidly under the plasma torch, and then solidifies. The whole process takes place
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with a high temperature gradient. As a result, the fine-grained and tough coating forms on the substrate. The coaxial and

preplaced powder schemes are the two most popular plasma cladding systems. In the first scheme, the surface of the

substrate is irradiated by the plasma torch forming the liquid melt pool. The carrier (or working) gas ejects the powder

under pressure from the nozzle. The powder then melts in the plasma torch, forming a cladding layer. The working gas

(usually argon) feeds the powder from this nozzle into the melted pool. Argon also acts as a shielding gas to avoid

oxidization. Thus, the powder feeding nozzle moves simultaneously with the plasma torch. They scan the substrate “line-

by-line”. In the case of preplaced powder systems, the substrate is covered by the powder mixture as cladding material

before melting. Frequently, glue is used to fix the pre-placed mixed powders to the surface and form the few mm thick

powder bed. Before cladding, the samples are usually preheated at ~100 °C for few hours to remove the glue. Then, the

plasma torch scans the preplaced powder mixture. As a result, the powder mixture melts and, afterwards, rapidly cools

down. The cladding layer is formed in such a way.

Researchers have to underline that recently the focus in HEA investigations has begun to move from homogeneous HEAs

to heterogeneous ones . Such HEAs contain more that one phase, high specific area of grain

boundaries (GB), and interphase boundaries (IBs), as well as other elements of inhomogeneity. The concept of GB phase

transitions can be very useful in the development of inhomogeneous HEAs. The GB phase transformations include GB

wetting by a second phase (liquid or solid), including formation of thin films of various GB phases . For

example, complete or incomplete GB wetting can strongly affect the microstructure, after solidification, of the melted pool

during the plasma cladding. 

2. Grain Boundary Wetting Phase Transitions

In most cases, HEAs contain numerous components. Therefore, the equilibrium phase diagrams for such complicated

systems must be constructed in 5–6 or more dimensions. Due to this trouble, researchers are forced to use a simplified

approach. Fortunately, the most important features of GB wetting phase transitions  can be described using the simple

two-dimensional phase diagram for binary alloys like that shown in Figure 1. Bold lines in this scheme (e.g., solidus,

liquidus, solvus, and eutectic lines) depict the bulk phase transitions. The thin lines (like tie-lines at T  and T )

depict the GB phase transformations. When the solidification of HEAs starts, the composition of an alloy can be found in

the phase diagram in the liquid area L. Afterwards, by cooling, it crosses the liquidus line and moves into the two-phase

area L + α. In this L + α area the melt is in equilibrium with solid solution α. The solid solution α is based on component A.

By following cooling, the amount of solid solution α in this L + α mixture increases and the portion of melt L decreases.

The composition of remaining melt L follows the liquidus line. Thus, the melt becomes more and more enriched by

component B. Similarly, the composition of solidifying phase α changes along the solidus line. If the concentration of

component B in α-phase is low, the solidification finishes at the solidus line. Afterwards, the solidified alloy has only phase,

namely the solid solution α. However, the portions of α-phase solidified at the end of the process are enriched by the

component B. If researchers discuss the multicomponent HEAs instead of this simple example of binary alloy, the GB

wetting transitions would be more complicated. This is because, for example, an HEA with five components is described

by the 5D phase diagram. Therefore, when the liquid alloy L with five components starts to crystallize, it can intersect with

not only one binary-phase region, α + L, such as in Figure 1, but numerous multiphase areas. Only afterwards can HEA

be completely solid and contain only one α-phase. These multiphase regions can contain more than one liquid phase and

one solid phase.
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Figure 1. Binary A–B diagram of 3D phases for the discussion of the GB wetting phenomena. Thick lines (solidus, solvus,

liquidus, eutectic lines) mark the bulk transitions between 3D phases. Thin lines at T  and T  mark the tie-lines for

the wetting of α/α GBs by the liquid phase, L. On the left-hand side of the figure the micrographs are shown for the L + (Al)

polycrystals containing liquid and solid phases. Case (a) shows the alloy structure above T . Here, all (Al)/(Al) GBs are

fully wetted. The scheme (b) shows the alloy structure between T  and T . Here, some (Al)/(Al) GBs are completely

wetted, and other (Al)/(Al) GBs are partially wetted. The scheme (c) shows the alloy structure below T . This sample

contains only partially wetted (Al)/(Al) GBs. The respective thermodynamic schemes for complete and incomplete GB

wetting are shown right. Here, σ  is the GB energy, σ  is the IB energy, θ is the contact angle. The micrographs are

reprinted with permission from ref. . Copyright 2021 MDPI.

When a polycrystal crosses the α + L area of the phase diagram, it contains, first, the interphase boundaries (IBs)

between liquid phase, L, and solid phase, α-phase. It also contains the α/α grain boundaries (GBs). The melt, L, contacts

the solid phase, α, in the triple junctions (TJs) between GBs and, respectively, two solid/liquid IBs, (see green schemes on

the right-hand side of Figure 1). The GB has the energy σ  and each solid/liquid IB has energy 2σ . If σ  < 2σ , (see

lower scheme in right-hand side of Figure 1), the GB has a non-zero contact angle, θ > 0, with the melt. The GB wetting

in this case is partial (or incomplete). The micrograph (c) on the left-hand side of the phase diagram shows an example of

how the microstructure of the two-phase α + L polycrystal of the Al–Mg alloy can appear below T . This sample

contains only (Al)/(Al) GBs partially wetted by the Mg-rich melt. If the energy of two solid/liquid IBs, 2σ , is lower than the

GB energy, σ  > 2σ  (see upper scheme in Figure 1), then the contact angle becomes equal to zero, θ = 0. In this

case, the thick melted layer should separate the solid α-grains, and the GB wetting is complete. The transition between

complete and partial GB wetting is described for numerous binary alloys. In these alloys the θ value decreases with

growing temperature and becomes zero at a certain temperature, T  (called the temperature of GB wetting phase

transition) . Above T , the GB is completely wetted. The GB wetting phase-transition is in principle two-

dimensional one. Nevertheless, it can be of first or second order, similar to phase transformations in the bulk . In

the case of a first-order GB wetting transition, the first temperature derivative of θ, dθ/dT, has a discontinuity at T . The

dθ/dT suddenly descends at T  from a certain finite value to zero . In case of the continuous (second-order)

wetting transition in GBs, the dθ/dT value continuously changes with growing T and smoothly reaches zero dθ/dT = 0

at T  . One must take into consideration that the σ  value can strongly depend both on the grain boundary

misorientation angle, χ, and on the grain boundary inclination angle, ψ . The dependences of GB energy on χ and ψ,

σ (χ) and σ  (ψ), possess the sharp cusps at certain χ and ψ values . These special misorientation and inclination

angles, χ and ψ, are determined by the coincidence site lattices. Due to this fact, the σ  can vary in a rather broad

interval of values. Obviously, the lower σ , the higher GB contact with the liquid phase would be at θ. This means that

contact angles in a polycrystal can vary in a very broad interval. Moreover, these contact angles for different GBs should

decrease with growing temperature with a different rate. Also, the low-angle GBs have lower σ  than high-angle GBs,

and, therefore, the higher T  values . Actually, the low-angle GBs are not continuous two-dimensional (2D) defects, but
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consist of arrows of 1D defects, namely dislocations. The GB triple junctions are also 1D defects, and for them, it is lower

than for high-angle GBs . Due to these reasons, the spectrum of T  temperatures in a polycrystal can be quite broad.

Such microstructures of two-phase polycrystals can be seen in Figure 1 (micrographs in the left-hand side). These are

the microstructures of the binary Al–Mg alloys. As a result, a conventional phase diagram for 3D-phases gets the

additional tie-lines at T  and T  for 2D GB wetting transformations. At T > T  all GBs in a polycrystal are fully

wetted and contain, therefore, the melted layer between solid grains. The micrograph (a) on the left-hand side of the

phase diagram shows an example of how the microstructure of the two-phase α + L polycrystal of the Al–Mg alloy can

appear above T . The micrograph (a) is reprinted with permission from ref. . In this sample, all (Al)/(Al) GBs are

completely wetted by the Mg-rich melt. The liquid phase surrounded all solid (Al) grains. The T  tie-line describes the

GB wetting transformation for GBs with the lowest σ  in a polycrystal. By cooling, the first partially wetted GBs appear

below T . Between T  and T , the amount of completely wetted GBs decreases with decreasing T. The

micrograph (b) on the left-hand side of the phase diagram shows an example of how the microstructure of the two-phase

α + L polycrystal of the Al–Mg alloy can appear between T  and T . The micrograph (b) is reprinted with permission

from ref. . In this sample, some (Al)/(Al) GBs are completely wetted by the Mg-rich melt and other (Al)/(Al) GBs are

partially wetted by the liquid phase. At T , the completely wetted GBs disappear. The T  tie-line describes the GBs

with the highest energy σ . Below T  there are no completely wetted GBs in an alloy, and the polycrystal has only

partially wetted GB with θ > 0. The respective example of the Al–Mg alloy is shown in the micrograph (c) on the left-hand

side of the phase diagram.

Above T , the liquid phase completely surrounds each solid grain (or crystallite). Thus, solid grains cannot contact

each other. It is because the “dry” GBs are thermodynamically forbidden above T . Researchers can see, therefore,

how the new GB tie-lines appear in the α + L area of a conventional binary diagram for bulk or 3D phases.

Researchers must underline here that GB wetting phenomena can be observed not only in HEA coatings, but also in the

bulk HEAs manufactured by the arc or induction melting in argon or vacuum 

, electric-current-assisted sintering (ECAS) , or additive manufacturing .
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