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The bidirectional reflection distribution function (BRDF) is among the most effective means to study the

phenomenon of light–object interaction. It can precisely describe the characteristics of spatial reflection of the

target surface, and has been applied to aerial remote sensing, imaging technology, materials analysis, and

computer rendering technology. 

BRDF  traditional measurement  fast measurement  developmental trends

1. Introduction

The interaction between electromagnetic waves and the surface of objects consists of three processes: reflection,

absorption, and transmission. The reflection of electromagnetic waves by the object is related to the roughness of

its surface and the wavelength of the waves. The surfaces of all objects in nature are neither ideally smooth, like a

mirror, nor ideally Lambertian. Reflection in these cases cannot be described simply by specular reflection or

diffuse reflection, but by the scattering of light with both specular and diffuse components in hemispheric space.

Nicodemus proposed the bidirectional reflectance distribution function (BRDF) in 1965 to characterize the

properties of spatial reflectance of the target surface . The BRDF combines specular and diffuse reflections to

provide a more realistic and accurate description of the characteristics of spatial reflection off the surface of the

target object.

In remote sensing, the calculation of surface albedo refers to the ratio of the total reflected light flux in each

direction to the total incident light flux. The surface Lambeau hypothesis leads to a 45% error in albedo calculations

, Stroeve et al.  found in their study that the inversion accuracy of illumination could be improved by combining

spectral data with multi-angle BRDF data. Currently, landmark albedo products in-orbit, such as POLDER, MISR,

MOIDS, and MERIS , are estimated based on surface bidirectional reflection characteristics.

In environment and Earth science, vegetation canopy structure parameters are key input parameters of ecosystem

productivity models, global climate, and hydrological models. The surface reflectance of different vegetation is

anisotropic due to its structural distribution. For example, BRDF distribution tests on wheat leaves , sorghum ,

maple leaves, and other leaves  can be found that different vegetation has different BRDF characteristic models.

Therefore, based on the sensitivity of multi-angle BRDF data observation to vegetation structure, BRDF data can

improve the accuracy of vegetation classification to 91% , which can improve the assessment of the ecological

environment in different regions.
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In optical research, stray light is a non-negligible aspect of all optical design, and its suppression is the basis for

obtaining high-quality images. BRDF/BTDF (Bi-directional Transmittance Distribution Function) data can be used to

quantify the scattering characteristics, and BRDF/BTDF spatial distribution data on the surface of optical elements

can be used in stray light modeling in FRED, ASAP, Zemax, and other optical software . As for stray light

suppression materials required in some space optical systems, their inhibitory effect on stray light can also be

judged by analyzing their BRDF data .

In computer model rendering and imaging, performance in terms of processing the microstructure of a given

surface based on BRDF data can be used to determine the degree of ‘realism’ in areas such as special effects and

3D animation. As visual attributes, gloss and texture are the physical information of BRDF distribution in

hemispherical space . The authenticity of human skin in animation production can be realized through a

large amount of BRDF model data. In 2006, T. Weyrich et al.  measured and estimated skin BRDF data of

people of different genders and races. L. Hanssen et al.  and G.S. Won et al.  also carried out a lot of work on

the establishment of BRDF data of human skin, providing data support for rendering technology of the human

model.

The use and calibration of basic measurement devices in meteorology, such as the Transmission Visibility Meter

(TVM) and the Forward Scattering Visibility Meter (FSVM), are based on atmospheric scattering characteristics.

The calibration of TVM is achieved by using the scattering characteristics of standard scatterers , while the

FSVM measures atmospheric visibility by measuring the scattering coefficient in the fixed direction of the

atmosphere .

2. Trend of Development of BRDF Measurement Devices

2.1. Summary of Development Status

The initial structure used for BRDF measurement was simple and rough . It was later automated to

improve the accuracy and stability of the measurements. Further advances have included the enrichment of light

sources  (multi-spectral, and polarization), new detectors (photoelectric detection, and Charge

Coupled Device (CCD) imaging), and the emergence of devices for fast measurement .

BRDF measurement devices are developing with the aims of being able to handle large amounts of data, and

having higher accuracy, higher efficiency, and greater stability. In accordance with the history of BRDF

measurements, the measurement devices can be divided into those for “traditional measurement” and “fast

measurement,” as shown in Figure 1.
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(a) Unachievable of time-varying BRDF detection for traditional measurement;

Figure 1. Classification

of BRDF measurement devices and system components.

Traditional measurement devices measure the sample by using a mechanical structure to rotate the detector and

the light source around it at a certain spatial angle. The most common structural form of such a device features a

combination of the zenith of the motion structure, the azimuthal circular track , and a cantilever

structure forms  for BRDF measurements. With the development of robotics, the

advantages of automated measurements have been expanded by combining robots with BRDF measurement

devices .

Devices capable of fast measurement are used to determine the reflective properties of the sample in hemispheric

space in one shot, with the aid of the optical properties of special surfaces, special optical devices, and optical

imaging techniques , or by increasing the area of the detector .

The measurement device uses a special surface reflector to eliminate part of the mechanical motion or increase

the area of detection to measure the characteristics of reflection of the sample in hemispheric space at once. The

device for fast measurement can use optics to consider the imaging device as an array of detectors to capture

multiple reflections in one snapshot. This approach improves the stability of the measurement system, and, most

importantly, the efficiency of the measurement. The measurement data that would take hours or even tens of hours

to obtain with a traditional measuring device can be obtained in seconds or minutes with a fast measurement

device.

2.2. Current Problems and Development Trends

An analysis of measurement devices reveals the following problems with current BRDF measurements:

Traditional devices perform

measurements in a point-by-point manner using mechanical motion in the hemispheric space of the BRDF
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(b) Lack of devices for fast measurement;

(c) Lack of means to fuse and reconstruct BRDF data;

(d) Incomplete analysis of factors affecting BRDF data.

distribution, and even sparse sampling requires tens of hours regardless of the form of mechanical motion.

Moreover, during the measurement process, the relative positional accuracy of the light source, sample, and

detector has a significant influence on the measurement results, and mechanical motion introduces large instability

to the measurement system. Moreover, the instability of the light source during measurement can cause intuitive

errors in the BRDF data. For special samples, e.g., oxidation on the surface of objects at high temperatures or on

liquids with dynamic scattered light, traditional measuring devices cannot provide BRDF measurements in variable

environments over long testing periods.

The devices for fast measurements can overcome the problems of

instability and low measurement efficiency in traditional measurement devices while avoiding errors due to power

fluctuations in the light source and variations in the sensitivity of the detector. They can also significantly reduce the

acquisition time and capture multiple reflected light signals in the sample hemisphere space in one snapshot.

However, they are limited by their mechanical structure, which can lead to missing BRDF data in a fixed direction in

the hemisphere space, and the resolution of their optical system is lower than that of the traditional mechanical

structure. Most importantly, the reflection outside the specular reflection area of the “one-shot” measurement is

weak, and the system has a low signal-to-noise ratio, so a highly sensitive, high-precision, hyperspectral detector

with a large dynamic range is needed.

The ultimate goal of the distribution of BRDF measurements

in a hemisphere is to fuse them with multi-angle information on the scattered light field to obtain the characteristics

of the target, and then to invert them. However, no study to date has examined the means of fusion and

reconstruction of information on the scattered light field.

The results of BRDF measurements are affected by many

factors, including but not limited to the wavelength of light, angle of incidence, surface morphology of the target

object, and temperature. Some studies have analysed the wavelength, angle of incidence, and observation angle

but no systematic research has been devoted to the other factors.

In summary, a method to quickly measure the BRDF is needed that can simultaneously measure the multi-angle

light field without requiring moving mechanical parts. It needs to also be at least as accurate as traditional

measurement devices.

3. Conclusions

As an important means of describing the distribution of spatial optical properties on the surface of an object, the

BRDF has been widely used in many fundamental and prospective research fields. In recent years, major work on

the BRDF has focused on the development and application of measurement devices along two directions. It is

showed that through an analysis of the entire developmental history of BRDF measurement devices, that the two

major types of measurement devices used have their respective advantages and limitations. The foundation of the

use of BRDF data is their accurate measurement, because of which research in the area is focusing on developing
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measurement devices with increasingly higher precision, efficiency, and stability. This can provide the basis for

developing a rich database of BRDF measurements to meet the demands of many fields. Moreover, factors

affecting the BRDF data and their applications need to be studied in more detail.
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