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Hybrid drugs, also termed “single molecule multiple targets” or “multiple ligands”, can be referred to as the most

sophisticated form of combination therapy. They are designed utilizing molecular hybridization—a strategy of

rational drug design which enables the fusing of one or more bioactive compounds or their pharmacophoric

subunits into one molecule, which represents the preselected, desired features of original drugs. Obviously,

connected entities should retain affinity to their specific targets and provide a superior therapeutic effect by

amplification or exerting multifactorial biological activity. Such a single hybrid agent can modulate multiple targets

involved in proliferation and efficiently destroy cancer cells.

hybrid drug  cancer  drug resistance  overcoming anticancer drug resistance

1. Background

Despite enormous advances in the field of cancer therapy that enable the targeting of particular metabolic and

signaling pathways or structures within a cancer cell, malignancies still have their mysteries and can outsmart

drugs. Resistance to anticancer drugs may be intrinsic and exists before their administration, or arises in response

to treatment e.g., due to dosing mistakes, bioavailability changes, or biotransformation fluctuations . The

mechanisms for developing cancer resistance include excessive drug efflux or reduced drug uptake, drug

inactivation, target alterations, epigenetics, DNA damage repair, apoptotic pathway blocking, epithelial-

mesenchymal transition (EMT), tumor microenvironment, and heterogeneity . In addition, the manner of

developing acquired resistance can be different in response to standard antineoplastic drugs and targeted therapy

. Resistance to cytotoxic drugs usually emerges due to overexpression of ABC transporters in cells membrane,

increased activity of detoxification enzymes, or dysregulation of mechanisms involved in DNA homeostasis. In case

of targeted therapy, resistance usually develops because cancer cells figure out how to bypass specific blockades

in signaling pathways involved in proliferation, survival and cell death. As a consequence, the obstacles preventing

continuous growth and cell division are removed, and cancer expansively attacks the host organism . The

aforementioned mechanisms of drug resistance can act independently or in combination. For example, acquired

taxane resistance is considered to be mediated by altered intracellular drug levels, tubulin structure variations, as

well as dysregulation of signal transduction or apoptotic pathways . The coexistence of several resistance

mechanisms further complicates responses to treatment .

Increasing knowledge of the molecular complexity of cancers and mechanisms of their resistance to anticancer

drugs, as well as extensive clinical experience, indicate that it is nearly impossible to achieve desirable

chemotherapeutic effects in the treatment of advanced cancer using single drug therapy . Multi-target approach
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provides not only greater therapeutic anticancer benefits and improved safety, but also reduces the risk of

developing drug resistance . The concept of polypharmacology was proposed by Andrew L. Hopkins, who

emphasized a marked shift in drug design philosophy from “the one gene-one drug-one disease” paradigm to the

“network-targeted-multi-component therapeutics” paradigm. Multi-targeted therapy may be achieved by multi-drug

combination cocktails, multicomponent formulations, or multi-target drugs .

The superiority of combination therapy over monotherapy was noticed in 1960s, when pediatric patients with acute

lymphocytic leukemia were treated with the combination of methotrexate, 6-mercaptopurine, vincristine, and

prednisone (formally known as the POMP regimen) . Consequently, during the 1960s and 1970s, many new

combined therapeutic protocols using several chemotherapeutic drugs with different mechanisms of action were

developed . Examples include the MOPP regimen (cyclophosphamide, vincristine, methotrexate, and

prednisone in full doses) as the first combined treatment of Hodgkin’s lymphoma , the ABVD regimen

(adriamycin, bleomycin, vinblastine, dacarbazine), which could improve long-term treatment outcomes compared to

MOPP, with better tolerance and less severe side effects , or triple CMF and quadruple CMFP drug regimens

(cyclophosphamide, methotrexate, 5-fluorouracil, without/with prednisone) in advanced breast cancer, and which

achieved impressive therapeutic results . These first studies on the efficacy of combination

therapy opened the way to the development of various therapeutic regimens applicable to the treatment of many

neoplastic diseases. Using drug cocktails combining two or more therapeutic agents with different modes of action

and non-overlapping toxicities has been a common practice in the clinical management of cancer until today .

2. Hybrid Drug—What Could It Be?

Hybrid drugs, also termed “single molecule multiple targets” or “multiple ligands” , can be referred to as the most

sophisticated form of combination therapy. They are designed utilizing molecular hybridization—a strategy of

rational drug design which enables the fusing of one or more bioactive compounds or their pharmacophoric

subunits into one molecule, which represents the preselected, desired features of original drugs . Obviously,

connected entities should retain affinity to their specific targets and provide a superior therapeutic effect by

amplification or exerting multifactorial biological activity . Such a single hybrid agent can modulate multiple

targets involved in proliferation and efficiently destroy cancer cells. In addition, it possesses simpler

pharmacokinetic profile, which reduces drug–drug interactions and facilitates the process of drug development.

Moreover, a single medication is expected to enhance patient compliance due to a less complicated treatment

regimen, as well as diminished number of adverse reactions and toxicity . The concept of hybrid molecules

should not be confused with the concept of pro-drugs, since the latter are designed to correct pharmacokinetic and

pharmacodynamic profiles of the leading entity .

Multi-targeted agents are usually designed according to a multi-pharmacophore mode. IUPAC defines

pharmacophore as “an ensemble of steric and electronic features that is necessary to ensure the optimal

supramolecular interactions with a specific biological target and to trigger (or block) its biological response” . The

multi-pharmacophore model can be divided into four distinct types, according to the degree of pharmacophores
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overlapping: conjugated pharmacophore (with non-cleavable or cleavable linker), fused-pharmacophore, and

merged-pharmacophore .

Pharmacophores, or whole parent compounds, can be connected by non-hydrolysable, or enzymatically stable

spacers, as well as cleavable linkers such as esters, amides, carbamates, or disulfide bonds. The release of parent

molecular structures occurs in the particular environment of a targeted tissue. In case of fused hybrids, subunits

are in direct contact through a functional group of each molecule, whereas merged hybrid compounds are obtained

by overlapping/combining two drug pharmacophores, generating a novel, smaller chemical entity with saved

pharmacological properties but substantially different chemical structure from the original drugs or pharmacophores

. Pharmacophores can be derived from drugs acting through the same mechanism of action or through

different mechanisms of action .

The work on obtaining an efficient hybrid drug is a complex, multi-stage process based on a thorough

understanding of targets and chemical properties of their ligands . First, it demands the discovery of multi-target

synergy, which is usually inspired by a clinically effective combination of drugs. Next, the key pharmacophores of

both active molecules and their appropriate linkage are identified. Research on the structure–activity relationship

(SAR) and optimization of a molecular structure, enabling a selection of lead compound for further studies, are

extremely difficult tasks . Obtaining merged hybrids demands fusing pharmacophores into a single molecule

which can affect the affinity and selectivity profiles of parent compounds, or lead to unintended interactions with

additional targets. In case of hybrid molecules, with subunits tethered by non-cleavable linkers, simultaneous

interaction with both targets may be impaired because it is difficult to combine two different entities while

maintaining their biological properties . The chemical stability of cleavable hybrids is another concern. An

appropriate linker should be used to ensure a controlled, tumor-specific cleavage reaction, releasing active drugs

at the site of action, with sufficient stability in the bloodstream to avoid systemic toxicity . It is also a challenge to

properly adjust the ratio of parent compounds and achieve an adequate modulation of both targets in vivo at similar

plasma concentrations . Moreover, it must be underlined that hybrid drugs, as large and complex chemical

entities, usually have high molecular mass and high lipophilicity. They violate Lipinski’s  and Veber’s  rules

defining molecular properties influencing oral bioavailability. Therefore, an optimization of drug-like properties of

hybrid compounds can be problematic . Sometimes, despite many efforts, the potency of the hybrid drug is

lower than its primary molecules .

3. Hybrid Drugs as an Answer to the Anticancer Drug
Resistance Problem?

Since scientific facts and clinical practice indicate that multifactorial diseases such as cancer can be effectively

treated by mainly attacking multiple targets, hybrid drugs seem to be the best solution to avoid or combat cancer

resistance which leads to therapeutic failures. Hybrid molecules are defined as chemical entities with two or more

structural domains having different biological functions . As a consequence, designing hybrid drugs which are

able to interact with different targets responsible for the onset of cancer offers a unique opportunity to enclose a
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combination of drugs in one molecule which exhibits increased therapeutic efficacy, reduced toxicity, and which is

less vulnerable to developing cancer resistance .

Moreover, the strategy of molecular hybridization, with the expanding knowledge about mechanisms of

tumorigenesis and cancer resistance, is a potent tool for overcoming cancer drug resistance based on mechanistic

rationale. Using properly designed hybrids may ensure the affecting of different hallmarks of cancer simultaneously

to avoid upregulation of resistance mechanisms. In addition, a lot of research describes the rational design of

hybrid drugs, which can circumvent the already existing resistance of cancer cells. The most common resistance

mechanisms and hybrid drugs rationally designed in response to their emergence are briefly discussed below.

3.1. Overcoming Anticancer Drug Resistance—From the Drug Perspective

Simultaneous modulation of additional biological targets, or synergistic/additive activity against the same target,

can be beneficial for treating malignancies that develop resistance to a particular group of drugs. Cisplatin and

platinum(II)-based analogs are approved for the treatment of many solid tumors . Unfortunately, these

DNA-damaging drugs exhibit severe toxicity due to a lack of selectivity. Moreover, therapy often becomes

inefficient because drug resistance occurs due to detoxification, decreased cellular uptake, improved DNA repair,

increased drug efflux, and diminished apoptosis .

Many hybrid drugs were proposed as an option to circumvent the limitations of Pt(II)-based chemotherapy .

Improved physicochemical, pharmacological, and toxicological properties of Pt(IV) prodrugs containing active

ligands in the axial position to the cisplatin molecule were reported . The insertion of one or two

biologically active ligands within the platinum(IV) scaffold produced many dual acting Pt(IV) hybrids. While the

Pt(IV) complex undergoes intracellular reduction to produce active Pt(II) species, it also releases two biologically

active ligands exhibiting specific modes of action, e.g., histone deacetylase (HDAC) inhibition, antitubulin activity,

and DNA damaging properties .

Pt(IV) derivatives of cisplatin with axial valproate (VPA) ligands 1, 2 (Figure 1) exhibited enhanced cytotoxicity in

cisplatin-sensitive and cisplatin-resistant ovarian cancer cell lines as a result of several processes involving

enhanced cellular accumulation, mainly attributed to increased hydrophobicity, downregulation of HDACs,

heterochromatin decondensation, and more efficient DNA platination .
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Figure 1. Selected platinum(IV) complexes with valproate (1, 2) or 4-PhB (3, 4) axial ligands.

Further studies were aimed at the explanation of how different platinum moieties (cisplatin vs. oxaliplatin) and

histone deacetylase inhibitor (HDACi) axial ligands (VPA vs. phenylbutyrate (PhB)) affect various parameters

associated with cytotoxic activity. It was elucidated that ligation of VPA or PhB to the axial positions of the Pt(IV)

complex converted them to neutral metalloesters, thereby facilitating a significant intracellular accumulation of both

cisplatin and free VPA or PhB. The Pt(IV) derivatives of cisplatin with two VPA 1 or PhB 3 (Figure 1) were

considerably more potent than cisplatin (13- and 50-fold respectively), while the VPA 2 or PhB 4 derivatives of

oxaliplatin were only approximately as potent as oxaliplatin. In addition, cisplatin complexes were more effective

than oxaliplatin complexes. Moreover, as far as the type of axial ligand was concerned, the bis-PhB

derivative 3 was approximately 5-fold more potent than bis-VPA analog 1. Impressive cytotoxicity displayed by the

Pt(IV) derivatives of cisplatin with axial PhB or VPA ligands was a consequence of combined intracellular actions of

cisplatin and PhB, or VPA that included HDAC inhibition, triggering apoptosis and depleting mitochondrial

membrane potential (which precedes mitochondrial-driven apoptotic cell death) .

Pt(IV) conjugates with inhibitors of tubulin polymerization (phenstatin, millepachine, and combrestatin-4 (CA-4)

analogs) were also elucidated. Pt(IV) complexes containing a phenstatin analog possessed better antitumor
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activities than their Pt(II) counterparts against the tested cancer cell lines, including cisplatin-resistant ones, and

were less toxic than the corresponding Pt(II) complexes against two normal human cell lines. Further mechanistic

evaluation on the most potent complex 5 (Figure 2) revealed that it strongly inhibited tubulin polymerization,

arrested the cell cycle at G2/M phases, and markedly enhanced apoptosis. Complex 5 (Figure 2) displayed potent

activity against human ovarian SK-OV-3 and human lung A-549 cancer cell lines that were cisplatin-resistant. In

addition, it caused apoptotic cell death of human non-small lung cancer cell line NCI-H460 and a potent inhibitory

effect on tumor growth in the NCI-H460 xenograft mouse model in vivo. The study suggested that Pt(IV) anticancer

prodrugs, containing a small molecule fragment that can stimulate or inhibit tubulin polymerization, may be a

promising approach for multiple-targeted cancer therapies . A series of dual-targeting Pt(IV) conjugates

consisting of millepachine analogs, with Pt(IV) complexes derived from cisplatin or oxaliplatin, also exhibited the

ability to inhibit tubulin polymerization and induce DNA damage. Among them, compound 6 depicted in Figure

2 possessed excellent antitumor activities against the tested human cancer cell lines (including cisplatin-resistant

cells) by arresting the cell cycle at the G2/M phases and inducing cell apoptosis, with low cytotoxicity towards

human normal cells. In addition, 6 displayed improved antitumor efficacy in the SK-OV-3 xenograft model in

comparison to cisplatin and the corresponding millepachine analog. Another Pt(IV) complex with the CA-4 analog,

CA-platin 7 (Figure 2), presented potent cytotoxic activities against human cancer cell lines, including cisplatin-

resistant cells. CA-platin 7 significantly inhibited tumor growth in the HepG2 xenograft model in vivo. Unfortunately,

it was less effective than cisplatin given to mice as a single agent or in combination with CA-4 . The authors

supposed that it was attributed to the inefficient release of CA-4 in the body, due to the strong ether bond in the

hybrid molecule preventing the cleavage of the complex .
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Figure 2. Selected Pt(IV) conjugates with inhibitors of tubulin polymerization.

An interesting strategy for overcoming the resistance of triple-negative breast cancer cell lines (TNBC) to platinum

drugs was presented by Ma et al. A performed CompuSyn analysis indicated that cisplatin (Pt) acts synergistically

with chlorambucil (CLB) against MDA-MB-231 cells. Two promising platinum(IV) complexes, CLB-Pt 8 and CLB-Pt-

CLB 9 (Figure 3), were designed. In vitro, CLB-Pt-CLB 9 (Figure 3) demonstrated better cytotoxicity than cisplatin

on MDA-MB-231 cells, apparently due to its dramatically enhanced cellular uptake and DNA platination levels.

Compound 9 (Figure 3) efficiently entered cells and released cisplatin and chlorambucil upon reduction. In addition,

it enlarged DNA damage and led more cells to apoptosis than cisplatin. It is noteworthy that it exhibited high

anticancer activity and no observable toxicity in BALB/c nude mice bearing MDA-MB-231 tumors. The CLB moiety

significantly elevated the passive diffusion of 9 (Figure 3) into cells, and damaged DNA synergistically with cisplatin
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Figure 3. Chlorambucil Pt(IV) conjugates: CLB-Pt 8 and CLB-Pt-CLB 9.

Impressive work was performed by Petruzzella and co-workers, who obtained quadruple action Pt(IV)

complex 10 (Figure 4), simultaneously releasing four bioactive moieties within cancer cells such as cisplatin,

dichloroacetate (DCA), phenylbutyrate (PhB), and Pt56MeSS. Cellular activation of 10 (Figure 4) led to DNA

platination, inhibition of HDAC activity caused by PhB, and interference with mitochondrial activity, probably due to

the combined actions of Pt56MeSS and DCA. Compound 10 (Figure 4) was extremely potent against highly

aggressive KRAS-mutated pancreatic and colon cancer cells .[56]
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Figure 4. Structure of quadruple action Pt(IV) complex.

3.2. Overcoming Anticancer Drug Resistance—From the Mechanism of
Development Perspective

3.2.1. Drug Transporters, Drug Efflux, Drug Uptake

Multidrug resistance (MDR) is referred to as the ability of cancer cells to develop cross-resistance or insensitivity to

many anticancer drugs, regardless of their chemical structure, mechanism of action, or molecular target . Drugs

affected by multidrug resistance, e.g., vinca alkaloids, anthracyclines, or paclitaxel, are commonly used in a broad

spectrum of chemotherapy regimens . Although cancer cells develop various mechanisms of

resistance to cytotoxic drugs, the key trigger is overexpression of drug transporters from the ABC family in the cell

membrane . ATP-binding cassette (ABC) transporters that utilize energy derived from ATP to mediate drug

transport are a family of proteins involved in the uptake and efflux of xenobiotics. They play significant roles in the

protection of normal cells and tissues by regulating biological membrane permeability . The three major ABC

drug transporters—P-glycoprotein (P-gp or ABCB1), Multidrug Resistance Protein 1 (MRP1 or ABCC1), and
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ABCG2 (also known as MXR-mitoxantrone-resistance gene, BCRP-Breast Cancer Resistant Protein, or Placenta-

specific ABC Transporter)—are most frequently associated with unfavorable clinical outcomes through the

development of transporter-mediated MDR. They are capable of extruding a wide range of anticancer drugs, thus

reducing their intracellular concentration and, subsequently, facilitating the development of resistance .

P-glycoprotein (P-gp), a product of the ABCB1 (or MDR1) gene, is profoundly characterized and understood

multidrug efflux transporter . Since the overexpression of P-gp is one of the major problems hampering

successful cancer chemotherapy, many agents have been designed and investigated for their ability to

inhibit/modulate P-gp mediated MDR alone, or in combination with cytotoxic agents . Nonetheless, the clinical

outcomes are still disappointing due to their low potency and specificity. The need to use high doses results in

serious side effects and toxicity to normal tissues, owing to the wide distribution of P-gp and its important

physiological and pharmacological roles in the human body. The discovery of new and effective P-gp modulators

without the abovementioned disadvantages is still a challenging task . Among various means of transient

modulation of MDR, such as direct inhibition of ABC transporters, gene silencing, transcriptional regulation, and

specific drug-delivery systems , hybrid drugs, due to their multiple targeting nature, were also investigated as a

promising way of overcoming P-gp-mediated MDR .

A series of bifendate–chalcone hybrids were synthesized and evaluated to enhance the P-gp inhibitory effect of

bifendate. The most promising compound, 11 (Figure 5), exerted little intrinsic cytotoxicity, whereas its

chemosensitizing effect was prolonged and more potent than bifendate and verapamil (VRP). In

addition, 11 (Figure 5) did not stimulate P-gp ATPase activity, which suggested that it is not a P-gp substrate .
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Figure 5. Structure of the most active bifendate-chalcone hybrid against P-gp function.

Another concept for overcoming P-gp-associated MDR was the design of hybrid drugs bearing an N, N-

bis(alkanol)amine diester scaffold, combined with a coumarin or benzene sulfonamide moieties, with a synergistic

inhibitory activity mechanism on P-gp and carbonic anhydrase .

Carbonic anhydrase XII (CA XII) is a membrane enzyme that maintains suitable intra- and extracellular pH in tumor

cells. It is highly expressed in some chemoresistant P-gp-positive cancer cells. Since optimal pH for efficient P-gp

efflux activity in cancer cells is slightly alkaline, CA XII activity is critical for P-gp efflux. As a consequence, the

activity of P-gp can be modulated by CA XII inhibition, producing a significant decrease in P-gp ATPase activity 

.

Among the tested compounds, derivatives bearing coumarin scaffolds 12 and 13 (Figure 6), incorporating an (E)-3-

(3,4,5-trimethoxyphenyl)vinyl moiety linked to a 7-methylenes spacer, showed the best synergistic MDR inhibitory

profile, being more potent on LoVo/DOX colon cancer cells that overexpressed both P-gp and CA XII than on
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K562/DOX leukemia cells overexpressing only P-gp. It made them potentially selective chemosensitizers able to

overcome P-gp-mediated MDR with a synergistic antitumor mechanism .

Figure 6. Selected dual P-gp and CA XII inhibitors.

Rullo et al., obtained conjugates consisting of 1,2,3,4-tetrahydroisoquinoline (THIQ) moiety linked to coumarin

scaffold through differently shaped and sized spacers. Compounds were evaluated in Madin-Darby Canine Kidney

(MDCK) cells overexpressing P-gp and MRP1. Several THIQ-coumarin conjugates were identified as nanomolar P-

gp inhibitors, and the most potent compound, 14, depicted in Figure 7 with a pentamethylene linker, showed

nanomolar inhibition potency. In addition, it was elucidated that linker length and flexibility affected P-gp inhibition

potency, whereas bulky groups (Br, Phenyl) at coumarin C3 improved P-gp/MRP1 selectivity. Some novel

compounds could reverse the resistance of MDCK-MDR1 cells to doxorubicin .
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Figure 7. The most potent THIQ-coumarin conjugate.

Hybrid compounds merging a thioxanthonic scaffold and an amine group, described as important pharmacophoric

features for P-gp inhibition, were designed using homology modeling and docking by Palmeira et al. . 1-[2-(1H-

benzimidazol-2-yl)ethanamine]-4-propoxy-9H-thioxanthen-9-one 15 (Figure 8) was identified as a potent P-gp

inhibitor. It caused an accumulation rate of rhodamine-123 similar to verapamil (a known P-gp inhibitor) in the

K562Dox resistant cell line. At a concentration of 10 µM, compound 15 caused a significant decrease in the

GI  (growth inhibitory activity) value of doxorubicin in the K562Dox cell line, being 2-fold more potent than

verapamil. Compounds 16 and 17 (Figure 8) at 10 µM sensitized resistant K562Dox cells (despite the lower

rhodamine-123 accumulation in comparison to verapamil), probably due to their dual activity as P-gp and cell

growth inhibitors .

Figure 8. Structures of selected 1-aminated thioxantones.

In some cases, direct interaction of a hybrid drug with the nuclear target can prevent the excretion of the drug from

the cell. Hybrids of combrestatin A (CA-4) and pironetin are a fine example . CA-4 is a plant-derived product

which exerts its action by binding to ß-tubulin, at colchicine-binding site , while pironetin (5,6-dihydro-α-

pyrone of fungal origin) can bind to α-tubulin . Conjugates of CA-4 and pironetin, tethered by an ester-type

linker of variable length or a 1,2,3-triazole spacer, were designed to display a dual affinity to both tubulin units.

They could bind covalently to tubulin, which prevented the efflux pump from expelling them out of cells. Evaluation

against two human ovarian carcinoma cell lines, A2780 (sensitive to chemotherapy) and A2780AD (resistant to

chemotherapy), revealed the highest cytotoxicity for three compounds: 18, 19, and 20 (Figure 9). The resistance

factor (RF—the ratio of the IC  for A2780AD to IC  for A2780) for most of the compounds under study was close

to unity, indicating that hybrid molecules of CA-4 and pironetin were also cytotoxic to multidrug resistant A2780AD

cells. The effect of hybrid molecules of CA-4 and pironetin on the cell cycle was also evaluated in a non-small-cell

lung adenocarcinoma cell line (A-549). Among tested compounds, two conjugates, namely 18 containing ester-type
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linker and 21 containing triazole linker (Figure 9), exerted the highest antiproliferative activity against A-549 cell

line. The same molecules displayed the strongest effect on depolymerization of the microtubule network .

Figure 9. Representative combrestatin A (CA-4) and pironetin hybrid molecules.

Resistance related to drug efflux is common but, sometimes, a lack of therapeutic activity may be associated with

impaired carrier-mediated transport of specific drugs into the cancer cell .

A deficiency in cancer of a reduced folate carrier mediated transport is the primary and frequent mechanism of

resistance to methotrexate (MTX), which limits its clinical use as an anticancer drug . To overcome folate

transporter-related resistance, a series of methotrexate-diosgenin conjugates with various polyamine linkers was

designed . Diosgenin is a natural, strongly hydrophobic steroidal saponin, with a cholesterol-like structure

exhibiting high biocompatibility and anticancer activity . MTX-diosgenin conjugates exhibited a stronger

antiproliferative activity against transport-resistant breast cancer cell line MDA-MB-321 than MTX. They had the

capability of entering MTX-resistant cells and retained the ability to inhibit dihydrofolate reductase (DHFR), despite

diosgenin substitution. Conjugate 22 (Figure 10) possessing disulfide bond was the most active among obtained

compounds .
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Figure 10. The most potent MTX-diosgenin conjugate.

Designing drug delivery systems is often reported as an efficient approach to overcome the efflux phenomena of

anticancer drugs , but the use of polymeric drug carriers is sometimes associated with a number of obstacles,

such as low drug loading, side effects connected with degradation, metabolism, and excretion, as well as poor

quality control . The carrier-free, drug self-delivery system for cancer therapy proposed by Huang P. et al.,

seems to be an innovative solution . An amphiphilic drug–drug conjugate (ADDC) 23 (Figure 11), consisting of

the hydrophilic anticancer drug irinotecan (Ir) tethered by a hydrolyzable ester linkage to the hydrophobic

anticancer drug chlorambucil (Cb), exhibited the ability to assemble into nanoparticles, with longer blood retention

half-life in comparison to free parent drugs. It facilitated the accumulation of drugs in tumor tissues and promoted

subsequent cellular internalization, helping to avoid P-gp-mediated multidrug resistance. After ADDC 23 (Figure 11)

hydrolysis, two released anticancer drugs exerted synergistic cytotoxicity to the tumor cells, exhibiting a higher

apoptotic rate and anticancer activity than the individual free drugs. These advantages of Ir−Cb ADDC

nanoparticles result in superior anticancer efficacy in vivo .

Figure 11. Amphiphilic drug−drug conjugate (ADDC) Ir-Cb, self-assembling into ADDC nanoparticles.

3.2.2. Drug Inactivation (Enzymatic Detoxification)

The glutathione S-transferases (GSTs) represent a family of detoxification enzymes that catalyze the conjugation of

glutathione (GSH) to many exogenous and endogenous compounds, including carcinogens, drugs, and oxidative

stress products. Several mechanisms, such as transcriptional activation, stabilization of either mRNA or protein,

and gene amplification, are reported to be involved in the overexpression of GSTs . MDR related to GSTs

overexpression is a consequence of the GSH-anticancer drug conjugates’ formation and their active efflux via ABC

transporters, or the inhibition of the mitogen-activated protein kinases pathway (MAPKs) . Many anticancer
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agents, such as adriamycin, 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU), busulfan, carmustine, chlorambucil,

cisplatin, cyclophosphamide, melphalan, or thiotepa, are potent substrates of GSTs , which affects their

anticancer activity and lead to adverse toxicity effects. . Conjugation of platinum-containing cancer drugs,

such as cisplatin and oxaliplatin, with GSH leads to their recognition as substrates for ABC transporters and

enhances their efflux from the cancer cells .

To overcome resistance to cisplatin associated with overexpression of π class glutathione S-transferase (GST

π-1), ethacraplatin (EA-CPT) 24 (Figure 12), a trans-Pt(IV) carboxylate complex containing ethacrynate ligands,

was designed . Metallodrug 24 (Figure 12) strongly inhibited the GST activity in cell-free and cell systems (~10-

fold of ethacrynic acid (EA) alone) and accelerated growth inhibition of cisplatin-resistant cancer cells, namely

breast MCF-7 and T47D, lung A-549, and colon HT29 human carcinoma cells, in comparison to cisplatin .

Unfortunately, in the case of malignant pleural mesothelioma (MPM) cells, compound 24 (Figure 12) could not

inhibit cellular GST activity. Therefore, it was postulated that its activity may be related to the type of cancer .

Figure 12. Structure of ethacraplatin (EA-CPT).

3.2.3. DNA Damage Repair

Many chemotherapeutic drugs, such as methylating, chloroethylating, and platinum-based agents commonly used

for treating cancer, exhibit antitumor effects by causing direct DNA damage in tumor cells . Their effectiveness is

often negatively influenced by the ability of cancer cells to repair this DNA damage. The role of DNA damage repair

in drug resistance was excellently reviewed in . One of the commonly described mechanisms of resistance to

alkylating agents is increased O -alkylguanine-DNA alkyltransferase (MGMT) protein activity, which repairs the

cytotoxic O -methylguanine (O -BG) DNA adduct through direct transfer of the alkyl group to its cysteine residue

 and prevents its harmful effects, resulting in cell apoptosis . Since high levels of MGMT in tumor cells result

in severe resistance to guanine O -alkylating agents, a series of methyltriazene hybrids bearing DNA methylating

triazenes and O -BG was obtained. Hydrolysis of obtained compounds under physiological conditions released O -

BG (a pseudosubstrate of MGMT) and DNA-damaging methyldiazonium derivatives, while p-nitrophenyloxy

derivative 25, depicted in Figure 13, exhibited favorable penetration properties, and was the most active toward the

NCI-60 panel of human tumor cell lines .
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Figure 13. The most potent methyltriazene hybrid bearing O -bnzylguanine moiety.

Zhu et al., obtained compounds with dual chloroethylating and methylating functions. Methylating moiety was

introduced to deplete MGMT activity, which enhanced the sensitivity of cells to chloroethylating entities, inducing

lethal interstrand cross-links. Compound 26 (Figure 14) exhibited the highest toxicity against human prostate

cancer cell line DU-145, which expressed MGMT .
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Figure 14. A hybrid compound with dual chloroethylating and methylating functions.

Combi-nitrosourea molecule 27 (Figure 15), releasing a DNA cross-linking agent and an inhibitor of MGMT, was

designed in response to cancer resistance to chloroethylnitrosoureas (CENUs) induced by MGMT, which repairs

O -alkylated guanine and, subsequently, inhibits the formation of dG–dC cross-links. It hampers the application of

CENUs in chemotherapy regimens. Molecule 27 (Figure 15) exhibited higher cytotoxicity against MGMT high-

expressing glioma cells compared with nimustine, carmustine, and their respective combinations with O -BG. The

results suggested that the superiority of 27 (Figure 15) is related to the simultaneous release of a

chloroethyldiazonium ion, inducing DNA cross-link and O -BG analogs inhibiting the MGMT-mediated drug

resistance in MGMT high-expressing cells .
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Figure 15. Representative combi-nitrosourea hybrid.

In addition to the previously mentioned hybrid Pt(IV) complexes (see Section 3.1), several platinum hybrids, with

bioactive ligands preventing multiple DNA damage response-mediated pathways, were designed . Cis-

wogonin 28 (Figure 16) is an octahedral Pt (IV) conjugate containing wogonin (5,7-dihydroxy-8-methoxyflavone,

isolated from Scutellaria baicalensis, exhibiting multiple anticancer effects on gastric, lung, and glioma cancer cells

) as an axial ligand. Cis-wogonin 28 (Figure 16), designed to suppress DDR (DNA damage repair)-related

proteins, could reverse existing cisplatin resistance. The significant antitumor activity of Cis-wogonin 28 (Figure 16)

was related to its ability to suppress JWA (retinoic acid-induced cytoskeleton-like gene involved in base excision

repair (BER) and DNA single-strand break repair (SSB) processes) and its multi-interaction with X-ray repair, cross

complementing 1 protein (XRCC1) required for efficient repair of SSBs . Cis-wogonin 28 (Figure 16) seemed to

be a promising cytotoxic agent reversing cisplatin resistance by targeting SSBs repair pathways and inducing

apoptosis .

Figure 16. Structure of Pt-wogonin conjugate.

Another hybrid drug, Cx-platin 29, showed in Figure 17, was designed to disrupt the DNA damage response

mediated by Casein Kinase 2 (CK2). CK 2 is a constitutively active Ser/Thr protein kinase overexpressed in cancer
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cells. It is involved in regulating many prosurvival cellular processes, playing important roles in resistance to

various chemotherapeutics  and the surveillance and repair of both single- and double-

strand breaks . Cx-4945 is a selective ATP competitive inhibitor of CK 2, exhibiting activity against numerous

malignancies in vitro and in vivo . It was elucidated that the antiproliferative activity of Cx-4945 is related to

modifications of signaling pathways such as PI3K/AKT, impairing DNA repair response, angiogenesis, splicing

regulation, stress-induced cell death, or epigenetic modulation . The inhibition of CK2 by Cx-

4945 strongly enhanced the efficacy of cisplatin . Cx-platin 29 (Figure 17), prepared by a fusion of cisplatin and

Cx-4945 as an axial ligand, exhibited superior cytotoxicity in comparison to cisplatin against cancer cell lines, with

distinct CK2-expressed levels, through suppressing CK2-mediated DNA damage repair and reversed cisplatin

resistance. Due to high lipophilicity and complex stability, 29 (Figure 17) was highly accumulated in tumor cells.

Moreover, subsequent profound platination of DNA caused severe DSB and SSB damage, inducing enhanced cell

cycle arrest and apoptosis compared with cisplatin and the combination of cisplatin and CX-4945. Further in vivo

tests showed that 29 (Figure 17) displayed high tumor inhibition rates and barely any toxicity effects in contrast to

cisplatin .

Figure 17. Structure of Cx-platin hybrid.

3.2.4. Target Modifications

Another important defense line of cancer cells is their ability to camouflage drug targets. Mutation, amplification, as

well as over- or under-expression of target levels ultimately lead to drug resistance . Such a mechanism is

observed in cases of many anticancer drugs, e.g., tyrosine kinases  or antitubulin agents. The latter can be

classified as microtubule stabilizers (taxanes and epothilones) that stimulate tubulin polymerization, or destabilizers

(vinca alkaloids, colchicine) that inhibit tubulin polymerization . In rapidly proliferating cancer cells, both events

lead to cell cycle arrest and apoptosis . Mutations in tubulin subunits, changes in the tubulin isotype

composition of microtubules, and alterations in microtubule-regulatory proteins are, apart from P-gp engaged in
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drug efflux , main factors influencing antitubulin drug resistance . Growing scientific evidence shows that

overexpression of βIII-tubulin is responsible for the taxane resistance appearing in ovarian cancer ,

as well as in other tumor types, such as lung, breast, and gastric cancers .

It was revealed that compounds binding at colchicine can circumvent β III-tubulin-mediated resistance, which

indicates the significant importance of designing new agents targeting colchicine-binding sites in an attempt to

overcome taxane resistance in refractory cancers .

Zhang and co-workers, inspired by successful combinations of taxanes with receptor tyrosine kinase inhibitors

(RTKi), reported on hybrid furo[2,3-d]pyrimidines exhibiting potent dual antitubulin and antiangiogenic activities

.

The choice of pharmacophores was inspired by the results of previous studies reporting that the

compound 30 (Figure 18), based on furo[2, 3 − d]pyrimidine scaffold, had afforded both VEGFR-2 and PDGFR-β

inhibitory activity , while 6-methyl cyclopenta-fused pyrimidines 31 (Figure 18) exhibited potent tubulin

depolymerization activity, together with significant in vitro and in vivo antitumor activity . Among

synthesized derivatives, compound 32 (Figure 18), showed excellent dual RTK (VEGFR-2 and PDGFR-β) and

microtubule inhibitory activity. In addition, it exhibited antiproliferative activity against the NCI-60 panel of cancer

cells at low nanomolar levels, and was active in either paclitaxel-resistant tumor cell lines with βIII tubulin, or those

that overexpressed P-gp. Moreover, 32 (Figure 18) showed potent growth inhibitory activity against tumor cells

expressing VEGFR-2 and PDFGR-β, which is comparable to sunitinib, and caused cell cycle arrest in the G2/M

phase, with subsequent apoptosis. The microtubule depolymerization through binding at the colchicine site was

determined to be the primary mechanism of its antitubulin action. Compound 32 (Figure 18) also provided excellent

antitumor activity superior to docetaxel and sunitinib in two murine models, reducing tumor size, vascularity, and

metastases without obvious toxicity. An additional advantage of 32 (Figure 18) over clinical antimitotic agents, e.g.,

paclitaxel, is its simple synthetic procedure and the possibility of its conversion to the water-soluble salt form .
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Figure 18. Hybrid furo[2,3-d]pyrimidines exhibiting dual antitubulin and antiangiogenic activities.

The conformational restriction of 32 (Figure 18), leading to the tetrahydroquinoline analog 33 (Figure 18), enabled

significant potency improvement against most of the NCI-60 panel cancer cells, including several chemoresistant

cell lines. Compound 33 (Figure 18) showed potent RTK inhibition with nanomolar IC  value and exhibited

microtubule depolymerizing activity comparable to or better than the lead compound 32 .

Deregulation of tyrosine kinases (TK), being essential components of signaling cascades involved in diverse

biological processes such as growth, differentiation, metabolism, and apoptosis, is connected with tumor

proliferation, invasion, and metastasis, as well as tumor neovascularization. As a consequence, protein kinase

inhibitors (TKIs) constitute important molecularly targeted drugs, broadly used for treating various malignancies

. Their introduction into clinical practice was a real breakthrough and opened the way to different targeted

therapies, significantly improving patient outcomes without the severe toxicity characteristic of commonly used

chemotherapeutics . Unfortunately, the usefulness of TKIs is sometimes impaired by poor cancer response and

acquired resistance. The predominant mechanism involved in resistance to TKI therapy, apart from gene

amplification, overexpression, or alterations of signaling pathways, is the emergence of point mutations of the

target kinase at the drug–kinase–interaction domain .

To circumvent TKI resistance, Pt-TKI hybrid compounds (Figure 19) were obtained by incorporating one of three

TKIs (imatinib 34, erlotinib 35, and vandetanib 36) into the core structure of Pt-based anticancer drugs

(cisplatin 37, oxaliplatin 38 and transplatin 39, Figure 19). Hybrids were formed by the reaction of Pt with the
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nitrogen atom on the quinazoline ring (erlotinib 35 and vandetanib 36) and pyrimidine ring (imatinib 34) of the TKIs.

The additional hydrogen bonds facilitating the binding of the hybrids to altered sites made them less prone to

resistance, causing secondary mutations. In addition, a dual anticancer mechanism of the Pt-TKI hybrids was

observed, encompassing the inhibition of oncogenic kinases and monofunctional platination of DNA, which also

probably contributed to the circumvention of drug resistance. The hybrids were not affected by the overexpression

of the transporters in resistant cells and might be able to penetrate the blood–brain barrier to treat cancer

metastasis in the brain. Apart from being effective in treating tumors bearing both sensitizing and resistance

mutations, such as the third-generation mutant selective epidermal growth factor EGFR-TKI, the hybrids are also

expected to exhibit a better side effect profile than the first generation TKIs .

Figure 19. PT-TKI hybrids. Each TKI (34–36) was conjugated with each platinum derivative (37–39) through

nitrogen atom labelled *.

Mammalian Target Of Rapamycin Kinase (mTOR) mutations, such as mutations located in FRB-domain, as well as

mutation located in kinase domain, are responsible for resistance to rapamycin analogs (rapalogs, e.g.,

temsirolimus, everolimus that are first in class mTOR kinase inhibitors approved for cancer therapy ) and

second generation mTOR ATP competitive inhibitors (TORKi), respectively . The exploitation of both ATP and

FRB binding sites of mTOR generated the third class of mTOR inhibitors, represented by RapaLink-1 40 and

depicted in Figure 20. Compound 40 is a bivalent mTOR inhibitor consisting of rapamycin-FRB binding moiety,

appropriately linked to the TORKi molecule. It prevents tumor growth in wild-type mTOR expressing cells and in

cells with acquired resistance to the first and the second generation of mTOR inhibitors. A unique bivalent

interaction of RapaLink-1 40 with mTOR is that binding at one site places the second half of the ligand in close

proximity for binding to the second site, thus overcoming point mutations that diminish drug binding . In

comparison with temsirolimus, which is the first-line therapy of renal cell carcinoma (RCC), 40 (Figure 20) showed

significantly improved inhibition of proliferation, migration, invasion, and colony formation in the treatment of

sunitinib-sensitive and sunitinib-resistant RCC cells in vitro and in vivo. It suppressed the mTOR signaling pathway,

a part of the MAPK signaling pathway, the ErbB signaling pathway, and ABC transporters that are associated with

resistance to many drugs .
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Figure 20. Structure of RapaLink-1.

3.2.5. Alterations in Signaling Pathways

Alterations in signaling pathways associated with survival (PI3K, AKT, mTOR, STAT), proliferation (MAPK, STAT,

growth factors: FGFs, EGFR, IGFs), and cell death (BCL2 family and PTEN) are resistance mechanisms

characteristic of targeted therapies .

In case of multifactorial diseases such as cancer, the strong specific inhibition of a particular dysregulated pathway

is insufficient to hamper the disease, because changes in signaling networks can reduce the effect of the drug

through the activation of new aberrant cellular pathways. Moreover, targeted therapies often unintentionally

provoke the preferential growth of resistant cells due to selective pressure on single elements of dysregulated

pathways .

The PI3K/AKT/mTOR is a common example of a hyper-activated signaling pathway in cancer cells.

Phosphatidylinositol 3-Kinase (PI3K) and mTOR synergistically promote tumor progression and resistance to

chemotherapy; therefore, inhibition of this pathway is an excellent treatment strategy and an efficient tool to avoid

or circumvent cancer chemotherapy resistance .

Rapalogs, aforementioned in Section 3.2.4, are partial inhibitors of mTOR through allosteric binding to mTOR

complex-1 (mTORC1), but not mTOR complex-2 (mTORC2) . Since mTORC1 negatively regulates

insulin/IGF-1 receptor signaling, mTORC1 blocking by rapalogs can stimulate PI3K/AKT signaling and antagonize

their antitumor efficacy . It was elucidated that treatment with rapamycin or rapalogs led to increased PI3K

activity and AKT signaling, resulting in minimal inhibition of tumor cell growth . Co-targeting mTOR and
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PI3K/AKT signaling prevented mTOR inhibition-initiated AKT activation and enhanced antitumor effects in vitro and

in vivo .

Kaloustian et al., conjugated 17-hydroxywortmannin (PI3K inhibitor) analog to rapamycin (mTOR inhibitor) through

a diester linker which underwent hydrolysis in vivo and released two highly potent inhibitors of PI3K and mTOR.

Conjugate 41 presented in Figure 21, showed profound activity in the mouse glioma model (U87MG). In addition,

at the dose of 15 mg/kg, compound 41 (Figure 21) inhibited the growth of human colon adenocarcinoma (HT29)

tumors, whereas an equivalent mixture of rapamycin and 17-hydroxywortmaninn was poorly tolerated. In the A498

renal tumor model, 41 (Figure 21) exhibited superior efficacy over rapamycin or 17-hydroxywortmaninn when

administered as a single agent or in combination with bevacizumab .

Figure 21. Structure of dual PI3K and mTOR inhibitor with excellent activity in vivo.

Other examples of mTOR/PI3K dual inhibitors were extensively reviewed by Chen and Zhou .

The activation of a signal transducer and activator of transcription 3 (STAT3) signaling pathway is present in a wide

range of solid cancers and drug-resistant cancers in humans. It is associated with a worse prognosis .

Therefore, inhibiting STAT3-mediated MDR1 gene expression is a possible treatment option for drug-resistant

cancers . Zhang et al., proposed an interesting idea for overcoming cancer cell resistance in solid tumors by

designing a new series of curcumin-BTP hybrids as STAT3 inhibitors with reactive oxygen species (ROS)-

promoting activity . Curcumin and its analogs with improved anticancer potential and bioavailability inhibit

numerous oncogenic processes, including those associated with the JAK2/STAT3 pathway or the induction of ROS
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production . The benzo[b]thiophene 1,1-dioxide (BTP) moiety is a characteristic

pharmacophore of many potent STAT3 inhibitors, markedly enhancing the ROS level and exhibiting antiproliferative

activity in cancer cells . Among obtained curcumin-BTP hybrids possessing drug-like properties and potent

bioactivities in vitro and in vivo, 42 (Figure 22) exhibited the best antitumor activity and selectivity for MCF-7 and

MCF-7/DOX cells, with significant STAT3 levels. Compound 42 (Figure 22) inhibited STAT3 activity, regulated the

expression of STAT3 downstream genes Bcl-2, Bax and Cyclin D1, with little effect on p-Src or p-Erk, and also

inhibited STAT3-mediated P-gp expression in MCF-7/DOX cells. In addition, 42 (Figure 22) was able to stimulate

intracellular ROS production and accumulation. The aforementioned activity synergistically promoted cancer cell

cycle arrest and apoptosis, which suggests that a combination of STAT3 inhibition with inducing high levels of ROS

may be a valuable strategy to address resistance of cancer cells .

Figure 22. Curcumin-BTP hybrid—a STAT3 inhibitor with reactive oxygen species (ROS)-promoting activity.

3.2.6. Epigenetic Alterations

The modulation of epigenetic processes is nowadays considered an innovative and interesting therapeutic strategy

because dysfunctional gene regulation is responsible for many human diseases  and emerging anticancer drug

resistance . Epigenetic modifications in gene expression cannot be explained by changes in DNA base

sequences. They are related to covalent modifications to the cytosine residues of DNA, histone covalent chemical

modifications such as acetylation, methylation, etc., known as chromatin remodeling, and noncoding RNAs .

Dysregulation of the dynamic status of histone acetylation plays an important role in the development of many

malignancies . The acetylation of lysine catalyzed by histone acetyltransferases (HATs) decreases the affinity of

histones for DNA and opens the chromatin structure to the more relaxed euchromatin form. It allows for the binding

of various transcription factors to DNA and activates many downstream gene transcription processes.

Deacetylation of lysine performed by HDAC enzyme leads to chromatin compaction and gene silencing .

Therefore, HDAC inhibitors (HDACis) are epi-drugs that can reactivate signaling pathways silenced by
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deacetylation , which, in turn, leads to an increase in the expression of tumor suppressors or decreases the

expression of genes involved in tumorigenesis . HDACis exhibit multidirectional cellular effects, including the

arrest of cell growth, cell cycle progression, and the induction of apoptosis. Moreover, through modification of both

histone and non-histone substrates, they have the potential to disrupt multiple pathways of cancer resistance .

It was elucidated that HDAC inhibitors, co-administrated with other anticancer agents, enhanced their anticancer

effects, which was the inspiration for the design of HDACIs-based hybrid drugs . It must be underlined that the

introduction of the pharmacophore for a second non-HDAC target would be impossible without a high degree of

structural tolerance of the surface-binding cap, which enables the designing of multi-targeted molecules without

compromising HDAC binding . The number of multi-target HDACi hybrids reported in the literature is

overwhelming . The examples described below show an undeniable and significant role of these hybrids in

overcoming anticancer drug resistance.

The design of RTKi/HDACi hybrids was proposed to overcome RTKi resistance, because combinations of HDACis

and RTKis were shown to act synergistically . Such a hybrid consists of a key fragment from the kinase

inhibitor, tethered by the appropriate linker to a zinc binding group from HDACi, as shown in Figure 23 . Many

attempts were made to combine HDAC inhibitors and EGFR inhibitors in a single molecular entity .

Figure 23. CUDC-101 44 consists of a key fragment from the kinase inhibitor 35, tethered by an appropriate linker

to a zinc binding group from HDACi-SAHA 43.

Cai et al., combined HDAC inhibitor vorinostat (SAHA) 43 (Figure 23) with EGFR inhibitor erlotinib 35 (Figure 23),

obtaining 7-(4-(3-ethynylphenylamino)-7-methoxyquinazolin-6-yloxy)-N-hydroxyheptanamide (CUDC-

101) 44 (Figure 23) as a lead compound . CUDC-101 44 (Figure 23) is a multi-targeted entity that exhibited

potent antiproliferative and proapoptotic activities against cancer cells in vitro and in drug-resistant tumor models in

vivo. Cancer cells resistant to single-target EGFR inhibitors remain sensitive to 44 (Figure 23) . It was
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elucidated that 44 (Figure 23) integrated HDAC and EGFR/HER2 pathway inhibition, blocked and inhibited MET-

and AXL-mediated signaling, and reduced cancer cell migration . Phase I study reported good tolerance

of 44 (Figure 23) and showed some preliminary evidence of its antitumor activity .

Results of a multicenter phase I dose-escalation study in patients with locally advanced, intermediate-, or high-risk

head and neck squamous cell cancer HNSCC also revealed good tolerance of 44 (Figure 23) in combination with

cisplatin and radiation therapy. The maximum tolerated dose (MTD) of CUDC-101-based combination therapy was

established at 275 mg/m /dose .

Moreover, it was found that 44 (Figure 23) had potent antiproliferative and proapoptotic activities in anaplastic

thyroid cancer (ATC) cell lines, with gene mutations in both the MAPK and the PI3K/AKT pathways . ATC

belongs to the most lethal human malignancies . Treatment with 44 (Figure 23) reduced the expression of

survivin, XIAP, N-cadherin, vimentin, β-catenin, and restored p21, as well as E-cadherin expression in ATC cells,

which could also explain reduced tumor growth, metastasis, and prolonged survival observed in metastatic ATC

mouse model in vivo .

In addition, 44 (Figure 23) exerted significantly stronger antiproliferative effects than arsenic trioxide (ATO) in Acute

Promyelocytic Leukemia (APL) and ATO-resistant APL cell lines, whereas it has a negligible cytotoxic effect on

non-cancerous cell lines, including normal CD34+ cells and BMSCs from APL patients. Mechanistic studies

revealed that 44 (Figure 23) directly induced hyperacetylation of histone 3, which led to the activation of caspase 3

and the degradation of the promyelocytic leukemia-retinoic acid receptor α (PML-RARα) fusion protein, which

subsequently facilitated the apoptosis of APL and ATO-resistant APL cells. Moreover, 44 (Figure 23) significantly

repressed leukemia development in vivo in the NB4 xenograft mouse model compared with ATO. These results

suggested that 44 (Figure 23) could be a potential candidate drug for APL, particularly for ATO-resistant APL 

.

CUDC-907 (Fimepinostat) 45 (Figure 24) is an orally available hybrid compound consisting of hydroxamic acid

representing HDAC inhibitory functionality, tethered to a morpholinopyrimidine moiety—the core structure of the

PI3K inhibitors. It is a nanomolar inhibitor of HDACs (I, II, Iv classes), as well as four I class kinases PI3K . It

(Figure 24) exhibited the potential to overcome drug resistance by simultaneous inhibition of PI3K activity and the

disruption of cancer networks through epigenetic regulation of HDACs. It was elucidated that 45 (Figure 24)

inhibited PI3K/AKT, JAK/STAT, and mitogen-activated protein kinase (MAPK) activation, as well as decreased C-

MYC protein levels in solid tumor and hematological cell lines . Moreover, the multidimensional modulation

of dysregulated cancer pathways resulted in the significant antitumor activity of 45 (Figure 24) in many preclinical

models of hematological malignancies and solid tumors , as well as clinical efficacy in

relapsed/refractory lymphoma and multiple myeloma (MM) , MM, lymphoma, and advanced/relapsed solid

tumors (newly diagnosed diffuse intrinsic pontine glioma (DIPG), recurrent medulloblastoma, or recurrent high-

grade glioma (HGG)) in young adults and children .
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Figure 24. Structure of CUDC-907 (Fimepinostat).

An alkylating histonedeacetylase inhibiting molecule, EDO-S101 (Tinostamustine) 46 (Figure 25), obtained by the

fusion of bendamustine with vorinostat, is the last example of a hybrid molecule described in our review. The

rationale of its design was the synergy of HDAC-inhibitors and DNA-damaging agents relying on the HDACi-

mediated chromatin relaxation that would make DNA more accessible to the damaging effect of bendamustine.

EDO-S101 46 (Figure 25) exhibited simultaneous alkylating activity and HDAC inhibition in vitro and in vivo .

Moreover, it showed significant activity against MM, leukemia, and B-cell lymphomas in preclinical models, with a

toxicity profile similar to bendamustine . It (Figure 25) was the only drug to exhibit activity as a single agent in

the multidrug resistant, transplant model of relapsed/refractory MM . This is in line with its outstanding

synergistic cytotoxicity in combination with proteasome inhibitors against MM and a wide variety of B-cell

neoplasms in vitro . EDO-S101 46 (Figure 25) is in early phase clinical development for a range of

relapsed/refractory hematological malignancies, advanced solid tumors (small-cell lung cancer, soft tissue

sarcoma, triplenegative breast cancer, ovarian cancer, endometrial cancer), and refractory, locally advanced or

metastatic melanoma (with Nivolumab) . In addition, it exhibits potent radio-sensitizing activity in aggressive

and temozolomide-resistant glioblastoma tumor models, supporting ongoing clinical evaluation of this compound in

combination with radiotherapy for the treatment of post-surgery glioblastoma patients . It is well worth noting

that the European Commission (EC) has adopted the recommendation of the European Medicines Agency (EMA)

Committee for Orphan Medicinal Products to grant Orphan Drug Designation (ODD) to Tinostamustine 46 (Figure
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25) for the treatment of T-cell prolymphocytic leukemia (T-PLL). The EC decision followed the FDA decision, which

granted Tinostamustine ODD status for the treatment of T-PLL in March 2019 .

Figure 25. Structure of EDO-S101 (Tinostamustine).
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