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Municipal wastewater treatment plants (MWWTPs) face great challenges in optimizing technologies and ensuring

environmental sustainability, in direct correlation with the increased pollution with emerging and priority

compounds, wastewater quality discharged and climate changes challenges. The recent developments on
the synthesis and characterization of composites based on polyelectrolytes, are discussed, and a
correlation of their actual structure and properties with the adsorption mechanisms and removal
efficiencies of various pollutants in aqueous media (priority and emerging pollutants or other model
pollutants) are presented.

advanced wastewater treatment  polyelectrolytes  composites  sorption  heavy metals

organic pollutants

1. Introduction

Municipal wastewater treatment plants (MWWTPs) face great challenges in optimizing technologies to avoid

ecological and human health problems and to ensure environmental sustainability, in direct correlation with the

increased pollution due to economic and social growth, wastewater quality discharged into surface waters and

climate changes. Industrial activities are responsible for the discharge of effluents with a wide range of inorganic

and organic compounds that belong to the priority (PPs) and emerging pollutants (EPs) classes, pharmaceuticals

and personal care products, pesticides, heavy metals, detergents, flame-retardants being only few examples of

such pollutants. Through their presence, eco-toxicological and human health effects, bio-accumulative and

degradation characteristics may influence aquatic biota and the performances and costs of water and wastewater

treatment technologies . Moreover, considering the new Circular Economy Action Plan and EU Green Deal there

is a huge pressure nowadays on the regional water operators (running water and wastewater treatment plants) to

decrease their operational costs and associated environmental impacts and carbon footprints (especially due to

energy consumption), while introducing more viable alternatives for wastewater recycling for industries,

agriculture/irrigation, aquacultures, trying to recover materials and energy from wastewater sludge .

MWWTPs collecting wastewater from combined sewers usually remove solids of different sizes, biodegradable

organic and inorganic compounds based on conventional processes such as the following: mechanical (bar-

screens, grit removal and sedimentation), biological (suspended or attached growth) and tertiary (nitrogen and

phosphorous removal) treatment. The implementation of wastewater reuse in agriculture or industry requires the

[1]

[2][3]



Polyelectrolytes Sorbents used in Advanced Wastewater Treatment | Encyclopedia.pub

https://encyclopedia.pub/entry/16720 2/24

elimination of targeted priority and emerging organic & inorganic pollutants, microorganisms (bacteria, viruses,

parasites) by means of advanced wastewater treatment (AWWT) (such as membrane processes, advanced

oxidation, adsorption, filtration, disinfection, etc.), that complete the conventional treatment as presented in Figure

1.

Figure 1. Municipal wastewater treatment outlines for various uses and pollutants removal.

Although, inorganic and organic pollutants classified as PPs or EPs are detected in wastewater at low

concentrations (few micrograms/milligrams per liter), they are toxic, bio-accumulative, low biodegradable and very

difficult to remove in terms of technological, energy and environmental efforts. In the European Union, both PPs

and EPs are monitored in surface water , but at the moment, in Europe, only Switzerland enforces legal

obligations to remove these compounds within MWWTPs . The advanced wastewater treatment for EPs removal

(for wastewater recycling and reuse) should consider at least the following criteria: (i) range of treated pollutants,

treatment efficiency & removal mechanisms, (ii) environmental reduced impacts, (iii) simplicity of operation &

maintenance, (iv) cost-effectiveness, (v) social acceptance .

In recent years, numerous classes of inorganic (metal oxides, zeolites, sand), organic (activated carbon, resins,

covalent organic frameworks), or composite sorbents have been designed to sorb different classes of

organic/inorganic pollutants . Due to some disadvantages (high costs, low sorption capacities,

low number of reusing cycles, non-degradable characteristics, secondary pollution) many types of these materials

could be difficult to be used in practice at large scale. Recently, natural and synthetic polyelectrolytes were

combined with some inorganic materials (SiO , TiO , graphene oxide, Fe O , clays, zeolites etc.) or other organic

polymers (cellulose, wood, cyclodextrin, polystyrene (PS), etc.) to create new materials (composite type) as perfect

candidates for sorption of toxic pollutants such as pharmaceuticals and heavy metal ions .

2. Composite Polyelectrolytes with Versatile Properties in
Targeting Different Types of Pollutants Dissolved in
Real/Simulated Aqueous Effluents

2.1. Why Composites Based on Polyelectrolytes?

[4][5][6]
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Polyelectrolytes are charged/chargeable polymers whose repeated ionic/ionizable structural units are higher than

10–15 mol%. Based on their ability to partially/fully dissociate in aqueous environment, polyelectrolytes are usually

classified in weak or strong and in anionic and cationic in dependence of charge type. These polymeric compounds

have a great potential in water and wastewater treatment (such as coagulation-flocculation process) due to a

particular characteristic: the high densities of functional groups bound to a flexible polymeric chain, allowing the

intimate interaction at the atomic level with various types of pollutants.

Using polyelectrolyte characteristics, numerous types of composites can be fabricated by covalent bonding or non-

covalent bonding (hydrogen bonding, π–π stacking, metal-ligand coordination, ionic, and hydrophobic interactions)

between polyelectrolytes and different inorganic/organic partners (Table 1). Composite polyelectrolyte materials,

which include mainly polymeric ionic chains, contain a large number and specific stimuli-responsive functional

groups with controllable action (detection, immobilization, releasing) toward different classes of pollutants entities

found in aqueous environment . The main types of polyelectrolytes, polymers, and inorganics entities used in

creation of composite sorbents, as well as the main tested pollutants, have been summarized in Table 1.

Table 1. Composite sorbents based on polyelectrolytes used for pollutants removal from aqueous media.

Weak/Strong Polyelectrolytes Organic/Inorganic
Partner Pollutant TargetedReferences

Chitosan (CS)

Poly(ethyleneimine),
Poly(vinyl amine), Poly(vinyl

alcohol), Poly(N,N-
dimethylamino)ethyl

methacrylate,
Poly(methacrylic acid),
Poly(sodium acrylate),

carrageenan,
carboxymethyl β-

cyclodextrin, carboxyalkyl
chitosan, Poly-

hexamethylene guanidine,
microcrystalline cellulose,
sodium alginate, karaya
gum, citric acid, itaconic

acid, sodium dodecyl
sulphate, Sodium

lignosulfonate, graphene
oxide (GO), Fe O , Fe,
TiO , Mesoporous silica
structures (MCM-48),

silicate rectorite, zeolite,
succinic anhydride, maleic
anhydride, itaconic acid,

trans-aconitic acid, biochar

Congo Red (CR),
Methyl Orange

(MO), Methylene
Blue (MB),

Bromocresol Green
(BCG), Reactive

Black 5 (RB5), Acid
blue-113, viruses,

Fe(II), Fe(III),
Cu(II), Ni(II), Co(II),
Cr(III), Cr(VI), Zn(II)

As(III), As(V),
Cd(II), Pb(II),
diclofenac,

ciprofloxacin

Quaternized chitosan (QCS) Chitosan, 3-chloro-2-
hydroxypropyl trimethyl

MO, CR, Cu(II),
Fe(III), Cr(VI)

[18][19]
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2
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Weak/Strong Polyelectrolytes Organic/Inorganic
Partner Pollutant TargetedReferences

ammonium chloride, Fe O ,
GO

Sodium alginate (SA)

Activated carbon, bentonite,
activated organo-bentonite,
carboxy carbon nanotubes,
pillared clay, Mauritanian
clay, organo-illite/smectite

clay, montmorillonite, nano-
hydroxyapatite,

carboxymethyl cellulose,
microcrystalline cellulose,
polyaniline, poly(acrylic
acid) glutaraldehyde,
Poly(hydroxybutyrate,

biochar, CS, GO, Zr(IV),
Fe O , MgAl-layered double
hydroxide, SiO , aluminum-

based metal organic
framework and chitosan

Nitrophenol,
Pentachlorophenol,

polychlorinated
biphenyl, crystal
violet (CV), MB,

MO, As(V), Cu(II),
Pb(II), Cd(II),

Fe(III), F , Cr(VI),
bisphenol A

Carboxyalkyl chitosan (CCS)
CS, salecan, citric acid,

Fe O , SiO , Cu(II), Al(III),
hexamethylenediisocyanate

As(III), As(V), Ni(II),
Pb(II), ciprofloxacin

Modified Poly(Cyclodextrin)

2,4-toluene diisocyanate,
1,6-hexamethylene

diisocyanate,
montmorillonite

2,4-dinitrophenol,
bisphenol A

Poly(ethyleneimine) (PEI)

Chitosan, Epichlorohydrin
(ECH), Poly(acrylic acid)
(PAA), poly(vinyl amine),

Poly(ethylene glycol)
diglycidyl ether, diglycidyl
ether of 1,4-butandiol, PS

nanoparticles,
montmorillonite, cellulose

acetate, diatomaceous
earth, bacteria, SiO ,

CaCO , Fe O

Formaldehyde, CR,
BCG, Rhodamine
B, Hg(II), UO (II),

Cd(II), Zn(II),
Cu(II), Ni(II), As(III),

Mn(II), Cr(III),
Cr(VI), Co(II),

Fe(II), Pb(II), Zn(II)

Carboxymethyl cellulose (CMC) SA, SiO ,
CR, MO, MB, BCG,

Pb(II)

Cationic cellulose
Cellulose nanocrystals,

wood pulp
MB

Poly(sodium 4-styrene sulfonate) (PSS) Octacalcium phosphate,
gelatin, pineapple leaf fiber,

Cu(II), Cd(II),
tetracycline, CR,

3 4

3 4

2

-
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[63][64][65]

[66][67][68]

[69][70][71]

[72][73][74]

[75][76][77]

[78][79][80]

[81][82]
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Weak/Strong Polyelectrolytes Organic/Inorganic
Partner Pollutant TargetedReferences

ZnO, Fe O MB

Poly(vinyl amine) (PVAm) CS, PEI CR, BCG, Cu(II)

Poly(acrylic acid) (PAA)
PEI, CS, Nano ferrous

sulfide, SA

Cd(II), Cr(III),
Cr(IV), Cr(VI),

Cu(II)

Carrageenan
chitosan, hybrid siliceous

shells
CR, MB,

metoprolol

Anionic polyacrylamide
Kaolinite, montmorillonite,

xanthan gum, SiO
Cr(IV), Pb(II), oil

Poly(allylamine hydrochloride) (PAH)
GO, diglycidyl ether of 1,4-

butandiol
Cr(VI), Cu(II),

Co(II), Zn(II), Ni(II)

Poly(2-acrylamido-2-methylpropane
sulfonic acid) (PAMPS)

Ti C -MXenes, methacrylic
acid, 2-hydroxyethyl-
methacrylate, gelatin,

Fe O , CuO with chitosan,
alumina

MB, Hg(II), Cu(II),
Cd(II), Ni(II), Pb(II),
Zn(II), doxycycline,

ciprofloxacin

Poly{[2-(methacryloyloxy)ethyl]dimethyl-(3-
sulfopropyl)ammonium hydroxide-co-

acrylic acid} (PDMAPS-co-AA)
Ti C -MXenes MB

Poly(diallyldimethylammonium chloride)
(PDDA)

pineapple leaf fiber, ZnO CR

Quaternized4-vinyl-pyridine-co-acrylamide
(QVP-co-AAm)

Fe O CR

Humic acid (HA) Fe O Cu(II)

Poly{[2-
(Methacryloyloxy)ethyl]trimethylammonium

chloride}

N,N′ -
Methylenebisacrylamide

Orange II, Remazol
Brilliant Blue R

The overview in Table 1 suggests the predominant use of heavy metals and dyes (HM&D) as models for inorganic

and organic aqueous pollutants, respectively. From our testing experience, these pollutants present certain

advantages as compared to more complex molecules, like emerging pollutants:

chemical structure—HM&D are usually present in solution in ionic form and have smaller molecular weights,

allowing them to diffuse more easily through the sorbent’s pores and reach the active sites;

3 4

[54][109]
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[31][110]

2
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range of initial concentration during adsorption tests—HM&D are used up to hundreds of mg/L, while EPs

usually are at most in the first few tens of mg/L;

analysis equipment—HM&D can be determined by using more affordable, less time consuming and potentially

less sophisticated equipment (e.g., UV-Vis spectrophotometer, atomic absorption spectrometer).

Every sorption process of the active species implies physical (transport, flow, swelling, diffusion etc.) and chemical

(interactions, immobilization) aspects. First of all, the pollutant molecules, dissolved in a certain medium, must be

transported near to the active site of the composite sorbent. Then, based on physico-chemical interactions

between sorbate and sorbent, the sorption process can take place. Therefore, the shape and size of each

composite sorbent at macro/nanoscale will dictate the active specific surface available for subsequent chemical

interactions. The swelling will influence the diffusion of sorbate through the dynamic pores and the composite

particle size will dictate the potential applications at laboratory or industrial scale. For example, composites larger

than 10 microns could be used in a column experimental set-up.

Thus, in this study all composites based on polyelectrolytes have been divided according to their macroscopic

shape: (1) Beads—high porous materials with high accessibility to the functional moieties; (2) Core-shell, “hard-

soft” composites with high surface area; (3) Gels (hydrogels, cryogel monoliths, sponges), stimuli-responsive

systems with high surface area; (4) Nanofibers, presenting good mechanical properties with high specific area and

(5) Membranes, with sorption and separation in one step (Figure 2).
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Figure 2. Organic/inorganic composite sorbents based on polyelectrolytes.

The use of inorganic/organic or organic/organic composites with polyelectrolyte(s) as active part of the sorbent

proved to be of high interest for immobilization of different pollutant types from aqueous environment, due to the

large variety and high numbers of functional groups (carboxylic, sulphonic, amine, imine, hydroxyl) .

Immobilization efficiency and selectivity through complexation, ion exchange, electrostatic and hydrophobic

interactions were linked to the nature of both functional groups and pollutants.

The nature of composite components, the cross-linking density of the synthesized material and the polyelectrolyte

architecture significantly influence the sorption properties and kinetics. Thus, after the physical state of composites

(shape, size, density, cross-linking degree etc.), the chemical interactions will be the second important parameter

that dictates the material capacity for pollutant detection, immobilization, concentration in solid phase and

subsequent releasing for a new starting sorption cycle. The sorption process of inorganic (Me ) or organic

pollutants (dyes, pharmaceuticals etc.) are driven mainly by electrostatic interactions, coordinative bonds

formation, dipole-dipole or Yoshida H-bonding interactions, and ion exchange interactions. The schematic diagram

of all these interactions is presented in Figure 3.

[125]

2+
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Figure 3. Principal types of interactions between inorganic (Me ) and organic pollutants with composite

polyelectrolyte sorbents functional groups.

This review brings a clear outlook on the benefits of using different moieties types as active sites of composites

based polyelectrolytes for the removal by sorption mechanism of a wide range of toxic, undesired pollutants

dissolved in water and wastewaters. The following subsections will be in accordance with the physical state of

composite materials, such as beads, core-shells, gels, fibers and membranes, where the chemistry behind each

pollutant retention is based only on sorptive mechanisms.

2.2. Beads Composites Based on Polyelectrolytes

In the last years, numerous studies have been focused towards combination between organic polymers and

organic/inorganic entities (see Table 1) due to their structural diversity, which can be successfully used in removal

of inorganic/organic pollutants dissolved in aqueous media. Sorption processes in water treatment could require

granular materials with certain size and, thus, the beads/microbeads composites based on polyelectrolytes could

widen the possibilities of pollutants extraction in solid phases. Novel binary/ternary beads composites, where

polyelectrolyte chain is the main component, could be mainly obtained by: (a) combination of CS with organic

species (e.g., starches-g-polyacrylonitrile , carrageenan , PVAm , PEI , microcrystalline cellulose ,

carboxymethyl-β-cyclodextrin , QCS , citrate ) and/or inorganic (e.g., Fe O  , Fe ), (b) combination

of SA with organic/inorganic entities, such as activated carbon , CMC , polyaniline , different types of clays

(bentonite , ilite , kaolinite , montmorillonite , Fe O  , SiO  , hydroxyapatite ),

and (c) combination of other types of polyelectrolytes (PEI, PAA)  to form interpolyelectrolyte composite beads.

The physico-chemical integrity of combined architectures inside the bead composite must be kept under different

2+
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environmental conditions (pH, ionic strength, temperature, magnetic field, etc.); therefore, the cross-linking of

organic/inorganic components is very important for beads stability/integrity and functional groups subsequent

accessibility by the pollutant molecule. The cross-linking could be carried out in situ (emulsification method) during

the bead formation or after the coagulation/precipitation or frozen of composite beads. The most important cross-

links could be achieved by covalent or ionic cross-linking with bifunctional compounds (e.g., glutaraldehyde ,

ECH , poly(ethyleneglycol diglycidyl ether) , carbodiimide , 3-chloro-2-hydroxypropyl

trimethyl ammonium chloride  etc.) and small ions (ionic gelation method), respectively, including Ca  

, Ce  , Zr  , Fe ), tripolyphoshate . Bifunctional reagents (glutaraldehyde, ECH

etc.) can react with primary amino groups (CS, PEI, PVAm) to form covalent cross-links, while small ions such as

Ca , Fe , or Zr  can ionically interact with two, three, or four carboxyl groups of SA.

Dragan and Apopei Loghin  obtained biosorbents cryobeads from chitosan and starch, using glutaraldehyde and

poly(ethylene glycol diglycidyl ether) as dual cross-linkers (Figure 4). It was shown that these composite

cryobeads kept their integrity and sorption capacity toward three heavy metal ions (Cu , Ni  and Co ) during five

sorption/desorption cycles.

Figure 4. Composite cryobeads based on CS and starch (reprinted with permission from ref. ).

Numerous authors obtained composite beads with magnetic properties by embedding Fe O  or Fe inside the

polymeric matrix, which can be CS/carrageenan , CS/carboxymethyl-β-cyclodextrin , carboxymethyl

chitosan/chitosan/citrate , calcium alginate , cerium alginate  etc., feasible to be used both in batch and

column sorption studies.

Magnetic composites beads based on natural polyelectrolytes have attracted the scientists’ attention due to the

high sorption/selectivity capacity. Liang and co-workers  obtained composite beads with magnetic

[53][62]

[20][31][54][55][96] [53] [42][52]

[60] 2+ [56][61][63]

[64][65][66][68][76][77][78][80][82] 3+ [67] 4+ [59] 3+ [54]

2+ 3+ 4+

[53]

2+ 2+ 2+

[53]
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[31] [42]

[52] [64] [67]

[31]
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responsiveness, showing high sorption efficiency toward dyes (MB and CR) and heavy metal ions (Cu  and Cr ).

Gopalakannan and Viswanathan  obtained magnetic alginate composites beads by incorporating Fe O  into SA

network followed by Ce  ionic gelation (Figure 5). The synthesized beads presented higher sorption capacity for

chromate ions (14.29 mg/g) compared with beads without Fe O  (9.45 mg/g) and single Fe O  particles (9.72

mg/g). In this study it was shown the spontaneous and endothermic nature of chromium sorption.

Figure 5. Structure of SA/magnetic (A) (reprinted with permission from ref. ) and SA/hydroxyapatite (B)

composite beads (reprinted with permission from ref. ) and subsequent interaction with pollutants.

To improve the mechanical stability and porosity/accessibility inside the composite beads, different types of clays

(bentonite, kaolinite, montmorillonite), SiO , hydroxyapatite etc., have been included during the beads synthesis 

, where the inorganic component could act as a cross-linker agent together with small ions, such as

Ca . Pandi and Viswanathan  showed that defluorination capacity of hydroxyapatite (1296 mg F /kg) and SA

beads (680 mg F /kg) increased to 3870 mg F /kg for SA/hydroxyapatite composite beads. Belhouchat and co-

workers  used bentonite to obtain SA/bentonite composite beads with high sorption capacity for anionic dyes,

such as MB and MO. The authors observed that both anionic and cationic dyes could be immobilized by SA

composite beads with bentonite inside. The MO sorption increased with bentonite content of SA composite, while

MB sorption decreased.

2+ 3+

[67]
3 4

3+

3 4 3 4
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Uyar and co-workers  demonstrated that the drying method of composite beads could have a significant

influence onto subsequent sorption of different types of pollutants. Composites that were deep-freezed at −21 °C

presented a drastically modified morphology of beads and improved surface area and sorption capacity, compared

with beads dried at room temperature. The pollutants sorption capacity and selectivity of synthesized composite

beads could be drastically improved by subsequent grafting of different small molecules  or polymers (PEI ,

polyaniline ) onto the solid beads surface. The PEI beads modified with 3-chloropropanesulfonyl chloride

exhibited high removal percentage for Hg  (>87%) and high selectivity in the presence of competing ions (Mn ,

Ni , Fe , Pb , Zn , and Cr ) .

2.3. Core-Shell Composites

Many scientists conducted pollutant sorption studies on different types of small inorganic (SiO , TiO , Fe O , clays,

minerals, etc.) and organic (active carbon, GO, biochar) solid surfaces . The pollutant immobilization on a

certain surface strongly depends on the nature, concentration, distribution and accessibility of material functional

groups. Inorganic sorbents present very good kinetics but low pollutant sorption capacity relative to sorbent

amount. Polyelectrolytes, with high number of functional groups on unit mass, present very high sorption capacities

but low kinetics due to slow diffusion in the collapsed state.

The core-shell architecture could be achieved by direct deposition of different types of natural/synthetic

polyelectrolytes (CS, PEI, humic acid, PAH, PVAm, PAA, PSS etc.) on 2D-cores, such as GO 

and Ti C -MXenes , or 3D-cores, including Fe O  , SiO  ,

SiO /Fe O  , PS , FeS , clays , CaCO  , mesoporous diatomite , natural fibers 

and sand . The direct deposition of the organic or organic/inorganic “shell” onto inorganic or organic “core”

could be carried out in (i) one-step, by physisorption , grafting , ionic or solvent

gelation/precipitation  or (ii) a multi-step procedure, such as layer-by-layer .

Using a strong polyelectrolyte (PSS), Chong and co-workers  obtained a stable magnetite nanoparticles with

excellent dye removal efficiency (~94%). By simple PSS sorption onto Fe O , the dynamic light scattering and

electrophoretic measurements showed a constant hydrodynamic diameter of 150 nm of the magnetic composites

over 5 h measuring. This stable dispersion had 50% higher dye sorption capacity compared with bare magnetite

nanoparticles. Also, Yao and co-workers  obtained stable core-shell colloids (~65–90 nm) based on FeS and

PAA with increased sorption properties for Cr  sorption compared with unmodified FeS. Using direct deposition, by

pH inversion precipitation of carboxymethylchitosan onto unmodified and modified silica particles, Aden and

collaborators  obtained core-shell composites with excellent sorption properties for Ni  (Figure 6). After drying

at 100 °C for 24 h, the composite particles were used without further modification steps as Ni  ion sorbent at pH 5

and 7.
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Figure 6. Synthesis of a core-shell composite based on carboxymethylchitosan (CM-CS) and silica particles

(reprinted with permission from ref. ).

Sometimes, due to harsh environment conditions (extreme pH, high ionic strength, temperature, etc.), which can

delaminate the “shell” of composite, the direct grafting of polymeric chains to the solid “core” or “shell” cross-linking

after or during deposition, must be carried out. For more stable composites over wide ranges of environment

stimuli, many authors anchor polyelectrolyte chains covalently to the inorganic core, which contains a linker

molecule on surface . In this way, the new created core-shell composite is more stable in aqueous media

and more effective in sorption of different pollutants. The immobilization of “shell” around the “core” could be

achieved by chemical cross-linking with bifunctional compounds, such as glutaraldehyde ,

epichlorohydrin , α,α’-dichloro-p-xylene , phtaldialdehyde . Ge and Ma  obtained CS/GO composite

microparticles by microwave irradiation method using GO, triethylenetetraamine, ECH and CS (Figure 7). Sorption

of Cr(VI) onto composite particles showed high values, reaching 219 mg/g at pH 2. The results obtained by batch

experiments showed that sorption capacity of synthesized composite increased with temperature and the sorbent

material could be recyclable.

Figure 7. The synthesis of CS/GO composites (reprinted with permission from ref. ).
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Bucatariu and co-workers used selective cross-linking to obtain core-shell silica composites based on PEI, PVAm,

polylysine, and PAH. This type of composites has been utilized in the removal of dyes  and heavy metal ions

 from real and simulated waters. The layer-by-layer technique involved in these studies allowed a

controlled deposited polyelectrolyte amount onto spherical silica particles. Furthermore, the subsequent

glutaraldehyde cross-linking stabilized the polycation layer onto each individual solid particle. To increase the

multilayer flexibility and functional groups accessibility toward pollutant molecules, the polyanion has been

removed from the cross-linked multilayer in extreme basic medium, as it can be seen in Figure 8. The fast kinetic

of Cu  sorption and high sorbed amount of anionic dyes (BCG, CR) after polyanion extraction, confirmed the

polyelectrolyte multilayer stability and flexibility after cross-linking and polyanion extraction. Based on distribution

parameter and relative atomic concentration of elements on surface, the authors demonstrated that silica/(PEI)

composite particles can clean (>95%) a simulated water contaminated with four heavy metal ions (Cu , Co ,

Ni , Cd ), if the ratio between number of composite functional groups and number of ions is higher than ~9 (non-

competitive regime). The competitive sorption between different metal ions showed that the composite had high

selectivity for Cu . Subsequent chemical modification of stable cross-linked core-shell composites with small

molecules, i.e., disodium ethylenediamine tetraacetate (EDTA-2Na), increased the sorption capacities by creation

of new functional groups onto core-shell surface.

[109]
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Figure 8. Schematic representation of LbL strategies to obtain silica//(polyelectrolyte)  with high capacities in

removal of Cu  (A,B) (reprinted with permission from ref. ) and dyes (C) (reprinted with permission from ref.

) from aqueous systems.
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