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Bacterial pathogens are serious causative agents of infectious disease. Such microorganisms are resistant to multiple

antimicrobial agents, thereby compromising the therapeutic efficacy of treatment.  Multidrug-resistant pathogens harbor

antimicrobial efflux pumps, many transporters of which are members of the extensive major facilitator superfamily of

proteins. These bacterial multidrug efflux pumps are good molecular targets for modulation and possible inhibition.  This

entry briefly discusses several current developments for drug efflux pump modulation. 
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1. Introduction

Due to their widespread occurrence among cells from across all known living taxa and because of their ability to confer

multiple antimicrobial resistance, bacterial multidrug efflux pumps from the major facilitator superfamily make suitable

targets for resistance modulation . A variety of efflux pump modulators have been discovered, such as naturally-

occurring bioactive agents , synthetic agents , and synergistic modulator combinations . Table 1 lists some examples

of various modulators of antimicrobial efflux pumps belonging to the major facilitator superfamily, which are discussed in

detail elsewhere .

Table 1. Some examples of various modulators of antimicrobial efflux in some bacterial efflux pumps from the major

facilitator superfamily.

Efflux Pump
Targeted

Modulators References

EmrB from

Escherichia coli

Phenylalanine arginyl β-naphthylamide

(PAβN) and 1-(1-naphthyl methyl)-

piperazine (NMP)

EmrD-3 from Vibrio
cholerae

Garlic, allyl sulfide

LmrP from

Lactococcus lactis

Verapamil and quinine

Nicardipine and vinblastine

Tetraphenyl phosphonium

QacA from

Staphylococcus
aureus

Hydantoin, silybin

MdfA from

Escherichia coli
Reserpine
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QacB from

Staphylococcus
aureus

Silybin

LmrS from

Staphylococcus
aureus

Cumin seed oil, cumin aldehyde,

reserpine

[11]
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NorA from

Staphylococcus
aureus

3-aryl piperidines

Berberine

Reserpine

Omeprazole, lansoprazole

GG918, tariquidar (primary active

transport inhibitors)

Verapamil, ciprofloxacin, ofloxacin

5,9′dimethyl-deca-2,4,8-trienoic acid, 9-

formyl-5-methyl-deca-2,4,8-trienoic acid

Chlorpromazine, thioridazine, and

prochlorperazine

Kaempferol rhamnoside

Chalones

COX-2 inhibitor analog, 3-(4-

chlorophenyl)-1-(4-nitrophenyl)-1,4-

dihydropyrazolo[4,3-c] [1,2]

benzothiazine 5,5-dioxide

Coumarin

Genistein (flavonoid compound)

Ginsenoside 20(S)-Rh2

Boronic acid molecules, 6-(3-

phenylpropoxy) pyridine-3-boronic acid

and 6-(4-phenylbutoxy) pyridine-3-

boronic acid

Silybin

5′-methoxy-hydnocarpin, pheophorbide

A, 5′-MHC, curcumin, kaempferol,

silibinin, isoflavone, orizabins, capsaicin,

tannic acid,

nerol, dimethyl octanol, estragole

Riparin B

[15]

[16]

[17]

[18]

[19][20]

[21]

[22]

[23][24][25]

[26]

[27]

[28]

[29]

[12]

[30]

[31]

[32]

[33]

[34]

[35]



Olaanolic acid, ulvaol

Brachydins: BR-A, BR-B

2. Modulation of Multidrug Efflux Pumps of the Major Facilitator
Superfamily

One of the earliest clear examples of modulation upon a major facilitator superfamily antimicrobial efflux pump was that of

the energy uncoupler carbonyl cyanide m-chlorophenylhydrazone (CCCP) and the TetA(C) tetracycline efflux pump ,

demonstrating that the pump was a secondary active transporter. Since this groundbreaking study, CCCP has been used

as a means of establishing the ion-driven process of energization for most newly discovered secondary active transport

systems . Furthermore, CCCP has been shown to be effective, albeit in an indirect manner, as an inhibitor of

antimicrobial efflux in a great variety of major facilitator superfamily transporters by collapsing the proton motive force

. Along these lines, reserpine and piperine have served as general inhibitors for many efflux pumps, independent of the

mode of energy, substrates, and superfamily membership .

A universal target for a multitude of efflux pump inhibitors is the NorA transporter from the critical pathogen S. aureus and

is considered in further detail elsewhere . Similarly, the QacA efflux pump from S. aureus represents another well-

studied target for modulation by a large number of inhibitors, which have been extensively reviewed . In our

laboratory, we discovered that the non-toxic cumin spice extract and its bioactive agent cuminaldehyde inhibited

resistance and efflux, respectively, which were mediated by the multidrug efflux pump LmrS from S. aureus . More

recently, brachydin-based compounds extracted from extracts of Arrabidaea brachypoda were shown to inhibit both the

growth of S. aureus and NorA drug efflux . As clinical infection by S. aureus is a critical public health concern and

because the genome encodes over a dozen distinctive antimicrobial efflux pumps, this bacterium will continue to be a

target of intensive study for resistance modulation .

We also evaluated the efficacy of the garlic extract and its bioactive agent allyl sulfide towards multidrug resistance

conferred by the EmrD-3 multidrug efflux pump from the Vibrio cholerae pathogen . We found a direct effect upon

antimicrobial transport across EmrD-3 by garlic extract at low concentrations but an indirect effect on resistance at higher

garlic extract amounts, probably through modulation at the level of the respiratory chain . Correspondingly, we observed

similar modulatory effects with cumin and drug transport through LmrS and with the energetics of the respiratory chain in

S. aureus . We anticipate that similar direct effects on antimicrobial transport at low modulator concentrations and

indirect effects at relatively higher modulator amounts will continue to be observed with other bacterial pathogens that

harbor multidrug efflux pumps that constitute members of the major facilitator superfamily.

Previously known as CmlA and Cmr, and now as MdfA, the protein structure of this multidrug efflux pump from E. coli was

determined at high resolution in which one of its substrates, chloramphenicol, plus two substrate analogs and putative

efflux pump inhibitors n-dodecyl-N,N-dimethylamine-N-oxide and deoxycholate, were bound to MdfA . Interestingly,

chloramphenicol makes contact with the conserved and negatively-charged residues Glu-26 and Asp-34, which are

located in α-helix one of MdfA and are encircled by conserved members of motif C, namely, Val-149, Ala-150, Ala-153,

and Pro-154, constituting the so-called domain interface between the two global bundles . In more recent studies, it was

discovered that not only is the α-helical structure formed by the motif C kinked, as predicted , but the fifth helix also

rotationally twists during substrate translocation across the membrane . Thus, because of its presence in efflux pumps

of the major facilitator superfamily, it is anticipated that the domain interface component of the molecular hinge is a

desirable target for the development of potent efflux pump inhibitors .
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