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Multicellular organisms consist of cells that can be categorized by their function and morphology. Single-cell

transcriptomics makes it possible to individually profile thousands of cells in multiple tissues and organisms within a single

experiment. Determining and labeling cell types or states in single cell transcriptomic data is known as cell-type

annotation or identification. Several methods are employed for cell-type annotation, including signature scoring,

supervised learning, cell-integration-based label transfer, and semi-supervised annotation. Considering the lineage

relationships among cell types, hierarchical classification methods are crucial for accurately identifying cell types and

subtypes at an optimal clustering resolution. The use of well-curated reference datasets, implementation of quality control

measures, and careful consideration of cluster resolutions heavily influence the reliability of cell-type annotation. The aim

of cell-type annotation is to gain insights into cell heterogeneity in various biological processes and diseases, with the

potential to drive improvements in therapeutic interventions.
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1. Cell Annotation by Signature Scoring

The prevailing method of cell-type annotation consists of unsupervised clustering analysis followed by manual or

automatic annotation using a set of known “marker genes”, also known as gene sets, markers, or signatures. An example

of this approach is the Seurat function FindMarkers , which employs differential expression analysis to identify

biomarkers defining clusters. This annotation approach does not necessitate training a model with another “annotated”

reference dataset. Still, it heavily relies on existing biological knowledge of known marker genes and involves subjective

decision-making, such as choosing the number of clusters (resolution).

Moreover, this process is typically manual, leading to potential time constraints and annotation inconsistency.

1.1. Signature Database

Several databases provide extensive collections of known markers that can aid in cell-type annotation (see Table 1).

These databases include MSigDB , Enrichr ARCHS4 tissues , TISSUES 2.0 , SaVanT , xCell , celldex ,

PanglaoDB , CellMarker , SCsig, and CellMatch . Among these, PanglaoDB, CellMarker, SCsig, and CellMatch

were specifically developed for scRNA-seq analysis. The scMRMA method utilizes Cell Ontology  to reorganize

PanglaoDB into a hierarchical structure, enabling consistent representation of cell types across various levels of

anatomical granularity.

Table 1. A survey of databases used for cell annotation.
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Database Data
Source Link

PanglaoDB scRNA-
seq https://panglaodb.se/markers/PanglaoDB_markers_27_Mar_2020.tsv.gz accessed on 25 May 2023

Hierarchical
PanglaoDB

scRNA-
seq https://github.com/JiaLiVUMC/scMRMA/tree/main/data accessed on 25 May 2023

Cellmarker
scRNA-

seq +bulk
RNA-seq

http://bio-bigdata.hrbmu.edu.cn/CellMarker/download/all_cell_markers.txt accessed on 25 May
2023

CellMatch
scRNA-

seq +bulk
RNA-seq

https://github.com/ZJUFanLab/scCATCH/raw/master/data/cellmatch.rda accessed on 25 May 2023



1.2. Scoring Method

Common scoring methods, like single sample gene set enrichment analysis (ssGSEA, ), gene set variation analysis

(GSVA, ), and Singscore , were initially designed for bulk RNA-seq data. The ssGSEA score quantifies the

coordinated up- or down-regulation of an input gene signature within a sample. GSVA performs kernel density estimation

of the gene expression profile across all samples, and Singscore calculates a normalized mean percentile rank. However,

these methods rely on statistical assumptions that do not consider the extensive presence of zero values and missing

genes within individual cells across a dataset, making these bulk-sample-based methods prone to dropout effects and

therefore suboptimal for scRNA-seq data analysis.

The optimal scenario for scoring genes is when there is a bi-modal distribution, indicating a high expression of signature

genes in one cell type but not others. However, at the single-cell level, most genes are either not expressed or exhibit

unstable expression patterns. Gene expression analysis is further complicated by dropouts (resulting from low input of

RNA amounts), transcriptional stochasticity, and diversity of cell states and identities.

Researchers have made significant efforts to address these challenges in order to improve the evaluation of gene

signatures in scRNA-seq data. Several approaches have been developed, including the cell-type activity (CTA) score ,

single cell signature scorer (SCSS, ), ModuleScore (implemented in Seurat’s AddModuleScore function), AUCell ,

Ucell , JASMINE , scType , scCATCH , and scMRMA , among others (see Table 2). These methods aim to

provide improved assessments of gene signatures within scRNA-seq datasets.

Table 2. Scoring methods used for cell annotation.

Method Description

CTA (Cell-Type Activity) Sum of the weighted expression

Ucell Mann–Whitney U statistic

AUCell Area under the curve

ssGSEA Rank-based enrichment score

SCSS Sum of UMI, normalized by library size

GSVA Kernel density estimation

Singscore Normalized mean percentile rank

ScType Cluster summary enrichment score

JASMINE Approximate mean of gene ranks and the enrichment of the signatures

AddModuleScore (Seurat) Average expression level

scCATCH Evidence-based scoring

The cell-type activity (CTA) method calculates an activity score for each cell type by summing the weighted expressions of

its marker genes . The SCSS score for a signature in a cell is computed as the sum of all UMI (unique molecular

Database Data
Source Link

SCSig scRNA-
seq

https://data.broadinstitute.org/gsea-
msigdb/msigdb/supplemental/scsig/1.0/scsig.all.v1.0.symbols.gmt accessed on 25 May 2023

SaVanT Microarray http://newpathways.mcdb.ucla.edu/savant-dev/SaVanT_Signatures_Release01.zip accessed on 25
May 2023

MSigDB
Bulk RNA-

seq,
Microarray

https://data.broadinstitute.org/gsea-msigdb/msigdb/release/7.2/msigdb_v7.2.xml accessed on 25
May 2023

xCell Bulk RNA-
seq

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5688663/bin/13059_2017_1349_MOESM3_ESM.xlsx
accessed on 25 May 2023

Enrichr
ARCHS4
tissues

Bulk RNA-
seq

https://maayanlab.cloud/Enrichr/geneSetLibrary?mode=text&libraryName=ARCHS4_Tissues
accessed on 25 May 2023

TISSUES
2.0

Bulk
RANseq,

Microarray
http://tissues.jensenlab.org/ accessed on 25 May 2023
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identifier) counts for the genes in the gene set expressed in that cell divided by the sum of total UMI counts in the cell.

Seurat’s AddModuleScore function calculates the average expression levels of each signature at the single-cell level, with

the aggregated expression of control feature sets subtracted. The analyzed features are grouped into bins based on their

average expression, and control features are randomly selected from each bin.

AUCell utilizes the area under the curve (AUC) to determine whether a critical subset of genes in the input gene set is

enriched at the top of the ranking for each cell. The AUC reflects the proportion of expressed genes in the signature and

their expression values relative to other genes within the cell.

UCell calculates gene signature scores for scRNA-seq data using the Mann–Whitney U statistic, which is correlated with

the AUC scores computed by AUCell. JASMINE calculates the approximate mean using gene ranks among expressed

genes and measures the enrichment of the signature in expressed genes. These two values are scaled to a range of 0–1

and averaged to obtain the final JASMINE score.

ScType calculates a cell-type-specific marker enrichment score per cluster by computing a cell type specificity score for

each marker, and then multiplying these by the z-score of marker gene expression across all cells. The values of each cell

signature are summed across cells corresponding to a specific cluster, resulting in the cluster summary enrichment score.

scCATCH employs the evidence-based scoring (ES) process, which utilizes tissue-specific cell taxonomy reference

databases (CellMatch) to determine cell types and subtypes in two steps.

Notably, scMRMA utilizes the CTA scoring method with different parameters at different levels (major cell types and

subtypes). This approach enables multiresolution cell annotation through iterative clustering and the mapping of clusters

to the hierarchical PanglaoDB marker database.

By implementing scoring methods, the annotation process of cells or clusters can be efficiently automated in annotation

tools like scType, scCATCH, and scMRMA. Since single-resolution unsupervised clustering cannot capture both global

and local biological variances simultaneously, a multi-resolution strategy like scMRMA can achieve more comprehensive

and detailed annotation.

The performance of signature-based cell annotation relies on several factors, including gene sets, scoring methods, and

the characteristics of the query data. It is important to note that the signature scores obtained may not always be

normalized or comparable across different gene sets or datasets. Improving the reproducibility and reliability of cell

annotation will require addressing the following general limitations:

Cell marker databases are compiled from diverse data sources generated using different technologies, each with its

own technical biases such as sensitivity, dropouts, and cell population purity. The derived signatures for the same cell

type can therefore vary across technologies. Additionally, signatures obtained from bulk RNA-seq or microarray data

may not accurately annotate cell types in single-cell data.

There is a lack of consistent criteria or methods for curating signatures. Gene sets can be derived experimentally,

computationally, or manually curated from the literature. Even computational selection methods, such as differential

expression analysis, can result in different gene sets due to arbitrary cutoffs (e.g., log2 fold change, false discovery

rate, top number of genes).

The size of gene sets (i.e., the number of genes they contain) varies greatly, making it difficult to compare the scores of

different signatures. Smaller gene sets (e.g., size < 20) are more likely to yield cells with unstable scores, while larger

gene sets (e.g., size > 100) can provide greater stability for detection and evaluation. It is often observed that the

signature scores of large random gene sets follow an approximately normal distribution, abiding by the central limit

theorem.

Redundancy across gene sets is common in large databases. Since gene sets may share a significant proportion of

their constituent genes, scoring results can be dominated by long lists of candidate cell types associated with

overlapping signatures, potentially obscuring meaningful cell types that possess only a few marker genes.

Most databases adopt a flat structure, treating each cell type equally and independently. While this approach can

effectively distinguish major cell types, it may struggle to identify cell subtypes due to the lack of relationships between

cell types. Hierarchical cell type databases could enhance discrimination of specific cell types or subtypes .[21]



Unstandardized cell nomenclature in certain publications can lead to overlapping or ambiguous anatomy terms or

identifiers for cell types. To address this, collaborative efforts such as the Cell Ontology (CL) and The Human Cell Atlas

(HCA) have begun to build a high-dimensional compendium of cell information.

For quality control of signature-based annotation, the following measures can be considered:

Assess the reliability of cell annotation by plotting the score histogram of a specific gene set and examining the

distribution of scores within cell types in the dataset.

Visualize the signature scores or average expression of a gene set in a two-dimensional plot. Calculating the mean

expression with library-size normalization provides an intuitive approach.

Some methods are sensitive to the number of detected genes or dropout rates. Checking marker gene expression

through dot plots or stacked violin plots can help to identify potential issues.

Employ a confusion matrix or mosaic plot to evaluate the final assignment of cell type labels.

By addressing these considerations and implementing quality control measures, the reliability and reproducibility of cell

annotation based on signatures can be improved.

2. Cell Annotation by Supervised Learning

In recent years, supervised cell annotation has gained significant attention due to the exponential growth of publicly

available single-cell RNA sequencing (scRNA-seq) data, including projects like the Human Cell Atlas

(https://www.humancellatlas.org/ accessed on 25 May 2023, ), Tabula Muris (https://tabula-muris.ds.czbiohub.org/

accessed on 25 May 2023, ), and the Mouse Cell Atlas (https://bis.zju.edu.cn/MCA/ accessed on 25 May 2023 ).

Supervised learning, a type of machine learning, has been employed to transfer cell type labels from labeled to unlabeled

datasets for cell-type annotation. Various common algorithms, such as Support Vector Machine (SVM, ), Random

Forest , k-nearest neighbors (kNN, ), neural networks , and deep learning , have been utilized in this field.

In general, the process of supervised cell annotation involves several steps. Firstly, a classifier is constructed using a

reference dataset of known cell types, which serves as the labeled training set. Secondly, feature selection is performed to

identify the most informative features for training the classifier. Thirdly, the classifier is trained using the labeled training

set to associate specific features with each cell type. Finally, once the classifier has been trained and evaluated for its

accuracy, it can be used to predict the cell type of new cells or clusters in an unannotated dataset.

As these steps require substantial computational expertise, numerous automatic annotation software tools employing

different supervised approaches have been actively developed to enable efficient supervised cell annotation.

2.1. Feature Selection

Feature selection is a crucial step in enhancing the performance and interpretability of a model by identifying the most

informative variables within a dataset. The primary objective is to reduce the dimensionality of the feature space by

eliminating redundant, irrelevant, or noisy features. This reduction not only improves computational efficiency during

model training and evaluation but also facilitates more accurate machine learning outcomes.

When it comes to cell-type annotation, known marker genes associated with specific cell types, obtained from external

resources, can be directly employed as features. Alternatively, marker genes can be identified through differential

expression (DE) analysis, which involves comparing the gene expression levels in a particular cell type against all other

cell types using statistical tests like t-tests , Wilcoxon signed-rank tests , or dedicated packages such as limma ,

DESeq2 , or Seurat’s FindAllMarkers function.

Certain feature selection methods rely on variance filtering. By establishing a threshold on the variance, features below

that threshold are eliminated from the feature set. Bartlett’s test  is utilized to assess whether the variances across all

groups are equal. Additionally, F-statistics are useful if the data follows a normal distribution and the group variances are

equal. Several feature ranking methods, such as information gain (Entropy test) , chi-square statistics , the

Kolmogorov–Smirnov (KS) test , and the bimodality index , can assign scores, ranks, or significance levels to genes

based on their relevance to cell-type annotation. Genes with higher scores or significance levels are considered more

informative or cell-type specific.
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Li et al.  pioneered the use of entropy, a measure of dispersion from information theory, to assess the distribution of

gene expression levels following a Poisson–Gamma mixture model. The entropy could be estimated directly from the

logarithm of the mean gene expression, and genes with larger total entropy differences were found to be more cell-type

specific. FEAST  applies unsupervised consensus clustering followed by an F-test on the clusters to calculate feature

significance and rank features accordingly. Andrews et al.  introduced M3Drop, which employs a Bayesian model to

estimate the dropout rate for each gene, incorporating its mean expression, and subsequently performing differential

expression analysis to select informative genes. This dropout-based feature selection method demonstrates superior

performance compared to variance-based approaches. Lin et al.  showed that the differential expression (DE) gene

selection method outperformed other tested methods (DE, DD, BD, and DP) in terms of cell-type annotation accuracy

(Table 3).

Table 3. Methods used for feature selection.

Method Description Reference

DE Differentially expressed genes

DD Differentially distributed genes by Kolmogorov–Smirnov test  

DV Differentially variable genes by Bartlett’s test  

BD Bimodally distributed by bimodality index

DP Differentially proportioned genes by chi-squared test  

M3Drop Dropout-based feature selection

E-test Entropy-based feature selection

FEAST Unsupervised consensus clustering followed by F-test for ranking features

2.2. Prediction Model (Classifier)

A variety of methods have been developed to annotate cell types in single-cell transcriptomics data using machine

learning models. For instance, scPred  employs support vector machine (SVM)-based classifiers on PCA-transformed

gene expression matrices. The singleCellNet  and scAnnotate  methods utilize the Random Forest technique for

classification. Garnett  trains a multinomial classifier using elastic-net regression  to discriminate between different

cell types. The L2-regularized logistic regression implemented in cellTypist  enables automated annotation of immune

cells across human tissues. The scClassify  method takes advantage of a k-nearest neighbors (kNN)-based learning

algorithm, combining multiple similarity metrics and feature selections. On the other hand, scDeepSort  employs a

weighted graph neural network, while Cell Blast  leverages large-scale reference databases and an autoencoder-based

generative model to obtain low-dimensional representations of cells and employs a cell similarity metric for mapping query

cells to specific types. SciBET  achieves rapid and accurate single-cell-type identification using a multinomial-

distribution model and maximum likelihood estimation. Notably, scBERT  is an adaptation of the Bidirectional Encoder

Representations from Transformers (BERT, ) model, originally developed for natural language processing for cell-type

annotation. The scBERT method incorporates gene expression data to represent cells and their relationships,

demonstrating superior performance in tasks such as novel cell type discovery and robustness, to batch effects, through

to pretraining and fine-tuning.

Several supervised cell annotation methods have been specifically developed for single-cell RNA sequencing (scRNA-

seq) data (Table 4), focusing on the correlation between the target and reference datasets. Notable methods include

SingleR , CellAssign , CHETAH , and scmap . SingleR assigns cellular identities to single-cell transcriptomes by

comparing them to a built-in reference transcriptome of pure cell types obtained from microarray or bulk RNA-sequencing

data. CellAssign employs a probabilistic model that utilizes a marker-based reference for cell type assignment. CHETAH

adopts a hierarchical classification approach, allowing cells to be assigned to intermediate or unassigned types through

stepwise traversal of the classification tree. Finally, scmap classifies query cells based on their similarity to reference cell

types using various correlation measures.

Table 4. Supervised machine learning methods for cell annotation.

Tool Year Reference Database Algorithm Ref.

SingleR 2019(**) Built-in celldex (transcriptome of pure cell types) Spearman
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Tool Year Reference Database Algorithm Ref.

scmap-cell 2018(**) Annotated transcriptome K-nearest neighbor (KNN)

Garnett 2019(**) Marker genes Elastic net regression

CellAssign 2019(**) Marker genes Probabilistic Bayesian model

scPred 2019(**) Annotated transcriptome Support vector machines (SVM)

singleCellNet 2019(*) Annotated transcriptome Random Forest

CHETAH 2019(*) Annotated transcriptome Spearman and confidence

cellTypist 2022(*) Annotated transcriptome L2-regularized logistic regression

CellBlast 2020 Annotated transcriptome Neural network-based generative model

sciBET 2020 Annotated transcriptome Multinomial-distribution model

scClassify 2020 Annotated transcriptome Weighted KNN

scDeepSort 2021 Annotated transcriptome Weighted graph neural network

scBERT 2022 Annotated transcriptome BERT

scAnotate 2023 Annotated transcriptome Random Forest

TOSICA 2023 Annotated transcriptome Transformer

**, citation > 100; *, citation > 50; accessed on 25 May 2023.

Supervised methods are generally not optimized for discovering novel cell types. Without additional configurations to

prevent over-classification, any new cell type in the target data may be forced into one of the existing cell types in the

reference dataset. However, a common strategy is to set a threshold on the prediction odds, classifying certain cells as

unassigned. This threshold-based approach is implemented in popular tools such as scmap, CellAssign, and CHETAH,

allowing the identification of unassigned cells.

The assessment of prediction results can be effectively conducted using multiple established metrics, each providing a

unique perspective:

Accuracy: This metric captures the ratio of correctly classified cell types to the total number of cells, providing a broad

view of model performance.

Adjusted Rand Index (ARI): ARI allows for the comparison of clustering patterns between the predicted and actual

(ground truth) classifications. It offers an insight into how closely the model’s clustering aligns with the actual data.

F1 score: The F1 score offers a robust measure of a model’s classification accuracy. It amalgamates precision and

recall into a single measure by averaging the individual F1 scores for each class. It provides a more nuanced view of

model performance, especially in scenarios where class imbalances exist.

Normalized Mutual Information (NMI): NMI is a metric that quantifies the shared information between the predicted and

ground truth distributions. By normalizing against the maximum possible mutual information value, it gives a relative

perspective on how much the predicted labels reveal about the actual labels, which is particularly useful in clustering

contexts.

Variation of Information (VI): VI evaluates the degree of difference between predicted and actual labels. It effectively

gauges how much the model’s classification deviates from the true label distribution.

There are more metrics that have been used to evaluate the performance of cell clustering and annotation; interested

readers may consult Hossin et al. .

The performance of cell annotation methods is heavily influenced by the quality of annotated reference databases.

However, constructing these reference datasets presents several notable challenges. One of these challenges is the

unavoidable need for manual cell-type annotation, which can be a time-consuming and subjective process. Additionally,

determining the appropriate clustering resolution or the number of cell types in both the reference and query data often

relies on subjective choices based on specific study requirements or expert opinions. Another crucial factor affecting
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classifier accuracy is the quality of the training set. If the reference data is not well curated, the classifier may yield

inaccurate results, leading to erroneous cell-type annotations in the query data. These considerations underscore the

importance of meticulous curation and careful selection of reference datasets for robust and reliable cell-type annotation.

3. Other Cell Annotation Methods

3.1. Cell-Integration-Based Label Transfer

An alternative method for annotating cells based on transcriptomic data involves integrating a query dataset with a well-

established reference dataset using an integration algorithm. This integration enables the annotation of clusters that span

both datasets, allowing the transfer of labels from the reference data to the corresponding query cells within the clusters.

This approach facilitates the identification of identical, distinct, and novel cell types. However, it is important to note that

this method can be computationally demanding. Additionally, integration algorithms may exhibit varying performances,

and batch effects or disparities between the reference and query data can introduce challenges.

3.2. Semi-Supervised Annotation

Semi-supervised learning  is a machine learning approach that leverages both labeled and unlabeled data during

model training. This technique is particularly valuable when only a limited amount of labeled data is available, as the

unlabeled data can enhance the model’s understanding of the problem domain. By incorporating unlabeled data, the

model can learn more about the underlying patterns and structure of the data, leading to better generalization. This

approach is particularly useful when acquiring labeled data is costly or time consuming, as it can make the most of

available resources and achieve satisfactory results with a smaller labeled dataset. However, it is important to note that

training a semi-supervised model can be computationally intensive . Additionally, selecting the appropriate algorithm

for a given problem and interpreting the results of such a model can be challenging.

There are two noteworthy recent implementations in this field: SCINA  and scNym . SCINA is a semi-supervised

model that utilizes an expectation-maximization algorithm  to annotate cells at the cluster level. It achieves this by fitting

a bimodal distribution to cell type marker genes. On the other hand, scNym is a semi-supervised approach that employs

an adversarial neural network  to transfer cell identity annotations from one experiment to another. Remarkably, scNym

has demonstrated high performance in cell-type annotation across experiments, even when faced with biological and

technical differences.

In summary, semi-supervised learning is a valuable technique that can enhance the performance of machine learning

models when labeled data is limited. Recent implementations such as SCINA and scNym showcase the potential of semi-

supervised approaches in annotating cells at the cluster level and transferring annotations across experiments.

4. Perspective

In many tissues, there are typically a small number of major cell types . These major cell types can further be divided

into subtypes in a hierarchical manner, forming what is known as a “cell type hierarchy” . While most supervised

methods classify cells directly into a “terminal” cell type, this one-step annotation approach can successfully identify the

major cell types but may result in misclassification of similar cell subtypes.

To address this challenge of cell subtyping, and considering the hierarchical relationships between cell types, recent

advancements in scientific research have introduced multi-scale or multi-resolution classification frameworks such as

scMRMA and scClassify. These frameworks take into account the hierarchical relationships between cell types and aim to

improve the accuracy of cell subtyping. Additionally, the divisive hierarchical clustering method uses various marker genes

to cluster cells in multiple iterations and at different resolutions, as seen in the co-occurrence clustering algorithm  and

TooManyCells .

Interestingly, a similar approach based on multi-level scale-adaptive clustering has been reported for the unsupervised

classification of tumor subtypes using RNA-seq. This approach, known as Resolution-Adaptive Coarse-to-Fine Clusters

Optimization (RACCOON, ), classified more than 13,000 samples into an eight-level hierarchical tree based on their

expression similarities. It successfully generated an atlas consisting of 455 tumor and normal classes. Building upon this

extensive hierarchy, the same research group developed a classifier called OTTER for childhood cancer. OTTER is an

ensemble of convolutional neural networks that performs robustly across all cancer types.
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The choice of cluster resolution in data analysis depends on the specific dataset and research objectives. Low-resolution

clustering can impede the accurate identification of distinct cell types, while annotating cells at the single-cell level is

susceptible to errors due to stochastic noise. To overcome these challenges, several approaches have been proposed.

A common strategy is to employ validation indices, such as the silhouette score or the gap statistic. These indices

evaluate clustering quality by comparing the distances within clusters to those between clusters. A higher score indicates

better clustering performance. An example of this approach is scLCA , which combines the Tracy–Widom test 

based on random matrix theory to determine the number of significant eigenvalues, and the silhouette score to rank the

results of spectral clustering. The scLCA approach has demonstrated effectiveness in accurately determining the number

of clusters in scRNA-seq data through systematic benchmarking .

Another approach involves utilizing visualization tools like t-SNE or UMAP. These techniques aid in identifying clusters

that may be excessively small or large, assisting in the refinement of cluster resolution. Optimizing resolution in this

manner can yield biologically meaningful and desirable outcomes, especially when considering common dropout events in

scRNA-seq data.

Nevertheless, it is important to recognize that, while there are various strategies for optimization and hierarchy, the

ultimate decision on cluster resolution remains a subjective judgment that the researcher must make.

Nonetheless, the careful curation, integration, and optimization of hierarchical knowledge databases derived from cell-type

ontologies and expression similarities in atlas datasets will have a pivotal impact on the advancement of cell-type

annotation methodologies. Moreover, this process will enable us to delve deeper into our comprehension of cell

heterogeneity in developmental processes and diseases, ultimately facilitating the development of more effective

treatments.

The annotation of new or rare cell types or subtypes presents challenges due to the scarcity of known markers or

reference datasets associated with them. In such cases, a combination of approaches can be considered. Initially, a

supervised method can be employed to predict the major cell types using a well-established reference dataset.

Subsequently, an unsupervised clustering method can be applied to identify subtypes within each major cell type

separately. When annotating new or rare cell types, a conservative approach is recommended. It is preferable to omit a

cell type lacking solid validation rather than erroneously categorizing a cell as a different type.
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